• Anúncio Global
    Respostas
    Exibições
    Última mensagem

transformações e espaços lineares

transformações e espaços lineares

Mensagempor bebelo32 » Sáb Mar 21, 2015 12:09

1) Verificar quais são seus subespaços em relações ás operações e multiplicação por escalar usuais.para os que são subespaços mostrar que as duas condições estão satisfeitas.caso contrario,citar um contraexemplo

a) S = {(x,y,z); x \in R }

b) S = {(x,x,0)/x \in R }
bebelo32
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mai 03, 2014 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: formado

Re: transformações e espaços lineares

Mensagempor adauto martins » Dom Mar 22, 2015 13:20

a)eh subespaço,pois...
1)0\in S,pois podemos ter x=y=z=0...
2)X,Y \in S,teremos X+Y \in S,pois ({x}_{1},{x}_{2},{x}_{3})+({y}_{1},{y}_{2},{y}_{3})=({x}_{1}+{y}_{1},{x}_{2}+{y}_{2},{x}_{3}+{y}_{3}),como {x}^{i}+{y}_{i}\in\Re
3)dados a\in \Re,teremos a.X=(ax,ay,az),como ax,ay,az \in\Re
b)tbem eh subespaço,analogo ao q. foi feito em a)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.