• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Vetores] Mostrando que um vetor como combinação linear.

[Vetores] Mostrando que um vetor como combinação linear.

Mensagempor billhc » Qui Mar 05, 2015 20:23

Sejam P, A e B pontos do espaço. Seja C o ponto no segmento AB tal que AC/CB = m/n. Escreva o vetor \vec PC como combinação linear dos vetores \vec PA e\vec PB.

Resumindo: eu tenho que escrever \vec PC = x*\vec PA + y*\vec PB.

Eu sei também que por conta dos ponto A B e C serem colineares eu posso escrever, por exemplo, \vec AC = z*\vec CB.

Então. Eu tentei achar uma relações para que eu pudesse achar os escalares que multiplicam PA e PB mas não consegui achar. O que eu não estou conseguindo ver?
O mais proximo que eu consegui chegar da resposta foi \vec PC = ((n-m)*\vec PA + m*\vec PB)/n.

http://i.imgur.com/pDxLyOi.jpg
billhc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Dez 22, 2009 16:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: [Vetores] Mostrando que um vetor como combinação linear.

Mensagempor adauto martins » Qui Mar 05, 2015 21:15

temos q.:
AC=(m/n)CB\Rightarrow PC-PA=(m/n)PB-(m/n)PC\Rightarrow (1-m/n)PC=PA+(m/n)PB\Rightarrow PC=(n/n-m)PA+(m/n-m)PB
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Vetores] Mostrando que um vetor como combinação linear.

Mensagempor Russman » Sex Mar 06, 2015 01:31

É fácil de perceber que os vetores \overrightarrow{AB},\overrightarrow{AC}, \overrightarrow{CB},\overrightarrow{PA},\overrightarrow{PC} e \overrightarrow{PB} se relacionam da forma

\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} (1)
\overrightarrow{AB}= \overrightarrow{PB} - \overrightarrow{PA} (2)
\overrightarrow{AC} = \overrightarrow{PC} - \overrightarrow{PA} (3)

Ainda, já que \frac{\overline{AC}}{\overline{CB}} = \frac{m}{n} e , portanto, \overrightarrow{CB} = \frac{n}{m}\overrightarrow{AC}, então, unindo tudo

\overrightarrow{PB} - \overrightarrow{PA} = \left ( 1+\frac{n}{m} \right ) \overrightarrow{PC} - \left ( 1+\frac{n}{m} \right ) \overrightarrow{PA}

de onde

\overrightarrow{PC}=  \frac{1}{\left (1+\frac{n}{m}  \right )}\overrightarrow{PB} + \frac{1}{\left (1+\frac{m}{n}  \right )}\overrightarrow{PA}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Vetores]Dúvida

Mensagempor Larissa28 » Sáb Mar 21, 2015 17:24

Alguém poderia por favor me mostrar essa resolução de uma forma mais clara?
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [Vetores] Mostrando que um vetor como combinação linear.

Mensagempor adauto martins » Dom Mar 22, 2015 13:08

uma correçao...
veja se entende,dado um P qquer do espaço,podemos ter...AC=PC-PA,assim como CB=PB-PC...entao pelos dados do problema teremos:AC=(m/n)CB\Rightarrow PC-PA=(m/n)(PB-PC)=(m/n)PB-(m/n)PC\Rightarrow
rearranjando teremos (1+n/m+n)PC=PA+(m/n)PB\Rightarrow PC=(1/1+n/(n+m))PA+(m/1+n/m))PB=(n/m+n)PA+(m/m+n)PB=(n/m+n)PA+(m/m+n)PB...NO LIVRO DO nathan m. santos...e resposta eh PC=(1-m/(m+n))PA+(m/m+n)PB...q. eh a mesma q. eu e rusmann chegamos,confira...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.