• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[f(x)=1-ln(x)]

[f(x)=1-ln(x)]

Mensagempor eduardo_ochoa » Sex Mar 13, 2015 21:58

Opa galera suave! Queria saber como resolver essa questão: Sendo f(x)=1-ln(x), determinar um intervalo mais amplo no qual f é invertível. Bom eu sei resolver ln mais esse um antes do log ta me matando. Como resolver f(x) e depois como torna-lo invertivel, se der para colocar passo a passo e falar a propriedade que usaram ( se usar) eu agradeço muito.
eduardo_ochoa
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mar 13, 2015 21:35
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [f(x)=1-ln(x)]

Mensagempor Russman » Sex Mar 13, 2015 22:09

A função inversa de f(x) que denotaremos por g(x) é tal que

x = 1- \ln(g(x))

Ou seja,

\ln(g(x)) = 1-x \Rightarrow g(x) = e^{1-x}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [f(x)=1-ln(x)]

Mensagempor eduardo_ochoa » Sex Mar 13, 2015 22:16

E como resolver f(x)
eduardo_ochoa
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mar 13, 2015 21:35
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [f(x)=1-ln(x)]

Mensagempor Russman » Sex Mar 13, 2015 22:19

Como resolver? Resolver o que?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [f(x)=1-ln(x)]

Mensagempor eduardo_ochoa » Sex Mar 13, 2015 22:31

f(x)= 1-ln(x), queria saber como resolver essa função para depois poder dar valores para x. e montar um grafico com f e f invertível ( vc já mostrou como faz)
eduardo_ochoa
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mar 13, 2015 21:35
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [f(x)=1-ln(x)]

Mensagempor Russman » Sex Mar 13, 2015 22:35

Não tem o que "resolver"! Você coloca valores de x>0 para que exista o logaritmo e calcula diversos pontos da função. A função é isso.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [f(x)=1-ln(x)]

Mensagempor jefferson0209 » Ter Set 22, 2015 18:33

alguem me ajuda?
1)sendo log2=u e log3=v,determine:
a)log12
b)log15

2)calcula:

log 81+ log625-log100
.. 3 . . 5
jefferson0209
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Ter Set 22, 2015 15:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: matematica
Andamento: cursando


Voltar para Logaritmos

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: