por eduardo_ochoa » Sex Mar 13, 2015 21:58
Opa galera suave! Queria saber como resolver essa questão: Sendo f(x)=1-ln(x), determinar um intervalo mais amplo no qual f é invertível. Bom eu sei resolver ln mais esse um antes do log ta me matando. Como resolver f(x) e depois como torna-lo invertivel, se der para colocar passo a passo e falar a propriedade que usaram ( se usar) eu agradeço muito.
-
eduardo_ochoa
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Mar 13, 2015 21:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por Russman » Sex Mar 13, 2015 22:09
A função inversa de

que denotaremos por

é tal que

Ou seja,

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por eduardo_ochoa » Sex Mar 13, 2015 22:16
E como resolver f(x)
-
eduardo_ochoa
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Mar 13, 2015 21:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por Russman » Sex Mar 13, 2015 22:19
Como resolver? Resolver o que?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por eduardo_ochoa » Sex Mar 13, 2015 22:31
f(x)= 1-ln(x), queria saber como resolver essa função para depois poder dar valores para x. e montar um grafico com f e f invertível ( vc já mostrou como faz)
-
eduardo_ochoa
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Mar 13, 2015 21:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por Russman » Sex Mar 13, 2015 22:35
Não tem o que "resolver"! Você coloca valores de x>0 para que exista o logaritmo e calcula diversos pontos da função. A função é isso.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jefferson0209 » Ter Set 22, 2015 18:33
alguem me ajuda?
1)sendo log2=u e log3=v,determine:
a)log12
b)log15
2)calcula:
log 81+ log625-log100
.. 3 . . 5
-
jefferson0209
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Ter Set 22, 2015 15:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: matematica
- Andamento: cursando
Voltar para Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.