por herobr23 » Seg Fev 23, 2015 19:10
Gostaria de saber como proceder nesse caso:
1. São dadas algumas equações de diversas funções. Construa seus gráficos.
f(x)x³+2x²+5x+8
Eu não consegui fazer essa equação e nem sei o que fazer, já tentei chutar e o valor mais aproximado deu 1,75 no chute, tentei pesquisar, contudo o material é muito escasso na internet.
Gostaria da ajuda de vocês em relação a como fazer esse gráfico.
Eu vi outro material que dizia que bastava atribui valor ao x, todavia, estou desconfiado e acho não esta certo.
Ficarei grato se vocês puderem me colocar no caminho certo para resolver a equação acima, ate mesmo com outros exemplos.
-
herobr23
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Fev 23, 2015 19:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria
- Andamento: cursando
por Baltuilhe » Qua Fev 25, 2015 13:38
sBoa tarde!
Para a construção do gráfico de funções podemos nos utilizar dos conceitos de limite e derivadas de forma a poder obter o desejado.
1. Obter os limites
e
;
2. Obter os pontos críticos calculando a derivada primeira e analisando;
3. Obter os pontos de inflexão e análise da concavidade pela derivada segunda;
1)
Vamos começar pelos limites:


Ou seja, a função vai para menos infinito quando os valores de x vão para menos infinito e vai para mais infinito quando os valores de x vão para mais infinito.
2)
Derivando (para obter os pontos críticos, fazemos a derivada igual a zero);


Resolvendo a equação do segundo grau:


Como o valor de delta é negativo esta equação NÃO possui raízes racionais. Portanto, não há valores críticos.
Analisando o sinal da derivada primeira, portanto, como só retornará valores POSITIVOS, indicando que a função f(x) é sempre CRESCENTE.
3) Derivada segunda:


Igualando a zero:



Analisando o sinal da derivada segunda, como muda de negativo para positivo ao passar pelo -2/3, este ponto é um ponto de INFLEXÃO (ponto de mudança de concavidade).
Vou deixar o link do wolframalpha já com o gráfico desenhado.
Neste link =>
http://www.wolframalpha.com/input/?i=x% ... 2%2B5x%2B8Veja que a função é crescente, e que no -2/3 ela muda de concavidade para baixo (antes do -2/3 a derivada segunda é negativa) para concavidade para cima.
Espero ter ajudado!
-
Baltuilhe
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Dom Mar 24, 2013 21:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função cubica x função da curva s (sigmoide)
por Joao Petrocelle » Sex Jan 04, 2013 18:15
- 2 Respostas
- 2892 Exibições
- Última mensagem por Joao Petrocelle

Sex Jan 04, 2013 21:08
Polinômios
-
- Limite de função com raiz cúbica
por leandroassisc » Ter Mar 10, 2015 16:25
- 3 Respostas
- 3025 Exibições
- Última mensagem por leandroassisc

Ter Mar 10, 2015 20:59
Cálculo: Limites, Derivadas e Integrais
-
- Máximo e Mínimo de Função Cúbica com Intervalos
por Flawyo » Ter Mai 13, 2014 13:58
- 9 Respostas
- 16126 Exibições
- Última mensagem por Flawyo

Ter Mai 27, 2014 14:06
Cálculo: Limites, Derivadas e Integrais
-
- [Equação Cúbica]Calcular x^3 + y^3 = 9xy pela equação cúbica
por jricardo » Sáb Ago 17, 2013 01:13
- 0 Respostas
- 1246 Exibições
- Última mensagem por jricardo

Sáb Ago 17, 2013 01:13
Álgebra Elementar
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14791 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.