• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função cubica

Função cubica

Mensagempor herobr23 » Seg Fev 23, 2015 19:10

Gostaria de saber como proceder nesse caso:
1. São dadas algumas equações de diversas funções. Construa seus gráficos.
f(x)x³+2x²+5x+8
Eu não consegui fazer essa equação e nem sei o que fazer, já tentei chutar e o valor mais aproximado deu 1,75 no chute, tentei pesquisar, contudo o material é muito escasso na internet.
Gostaria da ajuda de vocês em relação a como fazer esse gráfico.

Eu vi outro material que dizia que bastava atribui valor ao x, todavia, estou desconfiado e acho não esta certo.
Ficarei grato se vocês puderem me colocar no caminho certo para resolver a equação acima, ate mesmo com outros exemplos.
herobr23
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Fev 23, 2015 19:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria
Andamento: cursando

Re: Função cubica

Mensagempor Baltuilhe » Qua Fev 25, 2015 13:38

sBoa tarde!

Para a construção do gráfico de funções podemos nos utilizar dos conceitos de limite e derivadas de forma a poder obter o desejado.
    1. Obter os limites \lim_{x \to -\infty} f(x) e \lim_{x \to +\infty} f(x);
    2. Obter os pontos críticos calculando a derivada primeira e analisando;
    3. Obter os pontos de inflexão e análise da concavidade pela derivada segunda;

1)
Vamos começar pelos limites:
\lim_{x \to -\infty} x^3+2x^2+5x+8 = \lim_{x \to -\infty} x^3\left(1+\frac{2}{x}+\frac{5}{x^2}+\frac{8}{x^3}\right)=-\infty
\lim_{x \to +\infty} x^3+2x^2+5x+8 = \lim_{x \to +\infty} x^3\left(1+\frac{2}{x}+\frac{5}{x^2}+\frac{8}{x^3}\right)=+\infty

Ou seja, a função vai para menos infinito quando os valores de x vão para menos infinito e vai para mais infinito quando os valores de x vão para mais infinito.

2)
Derivando (para obter os pontos críticos, fazemos a derivada igual a zero);
f(x)=x^3+2x^2+5x+8
f'(x)=3x^2+4x+5

Resolvendo a equação do segundo grau:
3x^2+4x+5=0
\Delta=(4)^2-4(3)(5)=16-60=-44

Como o valor de delta é negativo esta equação NÃO possui raízes racionais. Portanto, não há valores críticos.
Analisando o sinal da derivada primeira, portanto, como só retornará valores POSITIVOS, indicando que a função f(x) é sempre CRESCENTE.

3) Derivada segunda:
f'(x)=3x^2+4x+5
f''(x)=6x+4

Igualando a zero:
6x+4=0
6x=-4
x=\frac{-4}{6}=-\frac{2}{3}

Analisando o sinal da derivada segunda, como muda de negativo para positivo ao passar pelo -2/3, este ponto é um ponto de INFLEXÃO (ponto de mudança de concavidade).

Vou deixar o link do wolframalpha já com o gráfico desenhado.
Neste link => http://www.wolframalpha.com/input/?i=x% ... 2%2B5x%2B8

Veja que a função é crescente, e que no -2/3 ela muda de concavidade para baixo (antes do -2/3 a derivada segunda é negativa) para concavidade para cima.

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: