por herobr23 » Seg Fev 23, 2015 19:10
Gostaria de saber como proceder nesse caso:
1. São dadas algumas equações de diversas funções. Construa seus gráficos.
f(x)x³+2x²+5x+8
Eu não consegui fazer essa equação e nem sei o que fazer, já tentei chutar e o valor mais aproximado deu 1,75 no chute, tentei pesquisar, contudo o material é muito escasso na internet.
Gostaria da ajuda de vocês em relação a como fazer esse gráfico.
Eu vi outro material que dizia que bastava atribui valor ao x, todavia, estou desconfiado e acho não esta certo.
Ficarei grato se vocês puderem me colocar no caminho certo para resolver a equação acima, ate mesmo com outros exemplos.
-
herobr23
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Fev 23, 2015 19:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria
- Andamento: cursando
por Baltuilhe » Qua Fev 25, 2015 13:38
sBoa tarde!
Para a construção do gráfico de funções podemos nos utilizar dos conceitos de limite e derivadas de forma a poder obter o desejado.
1. Obter os limites
e
;
2. Obter os pontos críticos calculando a derivada primeira e analisando;
3. Obter os pontos de inflexão e análise da concavidade pela derivada segunda;
1)
Vamos começar pelos limites:


Ou seja, a função vai para menos infinito quando os valores de x vão para menos infinito e vai para mais infinito quando os valores de x vão para mais infinito.
2)
Derivando (para obter os pontos críticos, fazemos a derivada igual a zero);


Resolvendo a equação do segundo grau:


Como o valor de delta é negativo esta equação NÃO possui raízes racionais. Portanto, não há valores críticos.
Analisando o sinal da derivada primeira, portanto, como só retornará valores POSITIVOS, indicando que a função f(x) é sempre CRESCENTE.
3) Derivada segunda:


Igualando a zero:



Analisando o sinal da derivada segunda, como muda de negativo para positivo ao passar pelo -2/3, este ponto é um ponto de INFLEXÃO (ponto de mudança de concavidade).
Vou deixar o link do wolframalpha já com o gráfico desenhado.
Neste link =>
http://www.wolframalpha.com/input/?i=x% ... 2%2B5x%2B8Veja que a função é crescente, e que no -2/3 ela muda de concavidade para baixo (antes do -2/3 a derivada segunda é negativa) para concavidade para cima.
Espero ter ajudado!
-
Baltuilhe
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Dom Mar 24, 2013 21:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função cubica x função da curva s (sigmoide)
por Joao Petrocelle » Sex Jan 04, 2013 18:15
- 2 Respostas
- 2783 Exibições
- Última mensagem por Joao Petrocelle

Sex Jan 04, 2013 21:08
Polinômios
-
- Limite de função com raiz cúbica
por leandroassisc » Ter Mar 10, 2015 16:25
- 3 Respostas
- 2861 Exibições
- Última mensagem por leandroassisc

Ter Mar 10, 2015 20:59
Cálculo: Limites, Derivadas e Integrais
-
- Máximo e Mínimo de Função Cúbica com Intervalos
por Flawyo » Ter Mai 13, 2014 13:58
- 9 Respostas
- 15758 Exibições
- Última mensagem por Flawyo

Ter Mai 27, 2014 14:06
Cálculo: Limites, Derivadas e Integrais
-
- [Equação Cúbica]Calcular x^3 + y^3 = 9xy pela equação cúbica
por jricardo » Sáb Ago 17, 2013 01:13
- 0 Respostas
- 1179 Exibições
- Última mensagem por jricardo

Sáb Ago 17, 2013 01:13
Álgebra Elementar
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14566 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.