por leticiapires52 » Sex Fev 13, 2015 11:20
-
leticiapires52
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Qua Fev 12, 2014 10:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por Baltuilhe » Sex Fev 13, 2015 14:47
Leticia, boa tarde!
Esta função é DESCONTÍNUA, pois:
Limite à esquerda de -2:

Limite à direita de -2:

Portanto:

Então, limites à esquerda e à direita existem e SÃO iguais, portanto, existe o limite.
Mas para a função ser contínua além do limite existir a função deve existir no ponto e possuir MESMO valor que o obtido pelos limites laterais.
No caso a função possui valor no ponto onde x=-2.
Pela definição passada:

Mas como 1 é diferente de 3, a função é DESCONTÍNUA.
Espero ter ajudado!
-
Baltuilhe
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Dom Mar 24, 2013 21:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- função descontinua
por alexandreredefor » Seg Jul 18, 2011 17:50
- 2 Respostas
- 2826 Exibições
- Última mensagem por LuizAquino

Ter Jul 19, 2011 17:31
Cálculo: Limites, Derivadas e Integrais
-
- Função descontinua alguém pode me ajudar
por Marcia C Silva » Sáb Mai 28, 2016 22:43
- 1 Respostas
- 1888 Exibições
- Última mensagem por nakagumahissao

Dom Mai 29, 2016 22:09
Funções
-
- Explique porque a função é descontínua no numero dado
por Pedro Coin » Sex Mai 27, 2016 23:20
- 1 Respostas
- 2642 Exibições
- Última mensagem por nakagumahissao

Dom Mai 29, 2016 22:10
Cálculo: Limites, Derivadas e Integrais
-
- Função continua
por Amparo » Dom Mar 09, 2008 16:14
- 1 Respostas
- 3921 Exibições
- Última mensagem por admin

Qui Mar 13, 2008 12:52
Funções
-
- função continua
por alexandreredefor » Dom Jul 17, 2011 18:23
- 4 Respostas
- 3182 Exibições
- Última mensagem por Molina

Seg Jul 18, 2011 11:42
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.