por Fernandobertolaccini » Dom Jan 11, 2015 17:33
Calcular

onde R é a região do 1o quadrante limitada por 5 ? y ? 9 ? x² :
a) considerando f (x, y) = 6;
Resp: 32
Obrigado !
-
Fernandobertolaccini
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Qui Mai 01, 2014 10:27
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Licenciatura em Física
- Andamento: cursando
por Russman » Dom Jan 11, 2015 19:21
O primeiro passo é sempre calcular os limites de integração. Os limites em y já estão dados, uma vez q são os limites da região de interesse. Assim, basta calcular os limites de x.
Como a região se milita no 1° quadrante, então o limite inferior de x é x=0. O limite superior será a intersecção entre as curvas

e

, já que neste ponto encerra-se a região de interesse. Daí,

.
Portanto, integre

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular o volume usando integrais duplas
por Fernandobertolaccini » Dom Jan 11, 2015 17:35
- 3 Respostas
- 4926 Exibições
- Última mensagem por Russman

Seg Jan 12, 2015 16:24
Cálculo: Limites, Derivadas e Integrais
-
- Calcular o volume usando integrais duplas
por Fernandobertolaccini » Dom Jan 11, 2015 17:38
- 0 Respostas
- 2017 Exibições
- Última mensagem por Fernandobertolaccini

Dom Jan 11, 2015 17:38
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAIS DUPLAS]Calcular o volume
por Tathiclau » Sex Jan 10, 2014 01:55
- 2 Respostas
- 3134 Exibições
- Última mensagem por Guilherme Pimentel

Seg Jan 13, 2014 06:24
Cálculo: Limites, Derivadas e Integrais
-
- Integrais Duplas
por gilijgs » Ter Nov 17, 2015 11:20
- 0 Respostas
- 2508 Exibições
- Última mensagem por gilijgs

Ter Nov 17, 2015 11:20
Cálculo: Limites, Derivadas e Integrais
-
- Integrais duplas por coordenadas polares
por Victor Mello » Dom Mai 25, 2014 16:48
- 0 Respostas
- 1058 Exibições
- Última mensagem por Victor Mello

Dom Mai 25, 2014 16:48
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.