• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Módulo do Vetor

Módulo do Vetor

Mensagempor Ana_Bela » Sáb Dez 13, 2014 22:51

Dado os pontos A(3,m-1,-4) e B(8,2m-1,m), determine m de modo que o módulo do vetor AB seja igual a raiz quadrada de 35.
Obs: Gostaria que alguém visse se está certo da maneira que resolvi ai embaixo, e se tiver algum erro' favor me comunicar e ensinar a fazer o certo.

Minha Resposta :
\left|AB\right|=\sqrt[2]{35}

\sqrt[2]{{5}^{2}+\left({m-2}\right)^{2}+\left({m+4}\right)^{2}}=\sqrt[2]{35} desenvolvendo
\sqrt[2]{{2m}^{2}+4m+45}=\sqrt[2]{35}
desenvolvi a expressão e no final deu' uma equação do 2º grau, onde m = 1 ou m = -3
Ana_Bela
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 27, 2014 10:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando

Re: Módulo do Vetor

Mensagempor Russman » Sáb Dez 13, 2014 23:05

(m-1) - (2m-1) = m-1-2m+1 = -m
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Módulo do Vetor

Mensagempor Ana_Bela » Dom Dez 14, 2014 12:26

Russman' vlw pela alerta' mas aqui AB é B - A = então é \left(2m-1 \right)- \left(m-1 \right)= m
vetor AB = (5,m,m+4)
Terminei aqui é deu m = -1 ou m = -3
Agora espero que esteja certo!
Ana_Bela
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 27, 2014 10:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.