• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Módulo do Vetor

Módulo do Vetor

Mensagempor Ana_Bela » Sáb Dez 13, 2014 22:51

Dado os pontos A(3,m-1,-4) e B(8,2m-1,m), determine m de modo que o módulo do vetor AB seja igual a raiz quadrada de 35.
Obs: Gostaria que alguém visse se está certo da maneira que resolvi ai embaixo, e se tiver algum erro' favor me comunicar e ensinar a fazer o certo.

Minha Resposta :
\left|AB\right|=\sqrt[2]{35}

\sqrt[2]{{5}^{2}+\left({m-2}\right)^{2}+\left({m+4}\right)^{2}}=\sqrt[2]{35} desenvolvendo
\sqrt[2]{{2m}^{2}+4m+45}=\sqrt[2]{35}
desenvolvi a expressão e no final deu' uma equação do 2º grau, onde m = 1 ou m = -3
Ana_Bela
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 27, 2014 10:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando

Re: Módulo do Vetor

Mensagempor Russman » Sáb Dez 13, 2014 23:05

(m-1) - (2m-1) = m-1-2m+1 = -m
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Módulo do Vetor

Mensagempor Ana_Bela » Dom Dez 14, 2014 12:26

Russman' vlw pela alerta' mas aqui AB é B - A = então é \left(2m-1 \right)- \left(m-1 \right)= m
vetor AB = (5,m,m+4)
Terminei aqui é deu m = -1 ou m = -3
Agora espero que esteja certo!
Ana_Bela
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 27, 2014 10:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.