por Texorras » Sáb Jan 09, 2010 13:13
Boas pessoal,
Como consigo resolver esta primitiva ??
((x^2)+1)^3
Ja tou a bater com a cabeça nas paredes

-
Texorras
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jan 09, 2010 13:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informatica
- Andamento: cursando
por D_Honda » Sáb Jan 09, 2010 14:15
Texorras escreveu:Boas pessoal,
Como consigo resolver esta primitiva ??
((x^2)+1)^3
Ja tou a bater com a cabeça nas paredes

Creio que seja assim:

Usei o Triângulo de Pascal.
Espero ter ajudado.
Qualquer coisa, estamos ai.
Diego.
-
D_Honda
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jan 07, 2010 22:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Química
- Andamento: cursando
por Texorras » Sáb Jan 09, 2010 14:27
eu ja tinha usado essa expressao mas nao deu certo ... experimente primitivar voce .
-
Texorras
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jan 09, 2010 13:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informatica
- Andamento: cursando
por Hel » Sáb Jan 09, 2010 14:54
Alguém pode me ajudar a resolver o gráfico f(x)= x/ln(x)
..
Calcule a derivada da função que é da forma f(x) = g(x)/h(x). Procure alguma tabela de derivadas pra te ajudar. Pra achar pontos de máximo ou mínimo, iguale a derivada a 0:
..
f´(x) = (g´(x)*h(x) - g(x)*h´(x))/(h(x))^2 = 0
..
f´(x) = ((x´)*(ln(x)) - (x)*(ln´(x)))/ln^2(x) = 0
f´(x) = (1*ln(x) - x*(1/x))/ln^2(x) = 0
f´(x) = (ln(x) - 1)/ln^2(x) = 0
..
(ln(x) - 1)/ln^2(x) = 0
ln(x) - 1 = 0
ln(x) = 1
log(x) na base e = 1
x = e
..
Não sei se esse ponto é máximo ou mínimo.
-
Hel
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Jan 08, 2010 20:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por Hel » Sáb Jan 09, 2010 15:22
Alguém pode me ajudar a resolver o gráfico f(x)= x/ln(x)
1- onde ela é decrescente e crescente;
2- mínimo e o máximo da função;
3- assíntotas
4- onde côncava e convexa
f´(x) = (g´(x)*h(x) - g(x)*h´(x))/(h(x))^2 = 0
..
f´(x) = ((x´)*(ln(x)) - (x)*(ln´(x)))/ln^2(x) = 0
f´(x) = (1*ln(x) - x*(1/x))/ln^2(x) = 0
f´(x) = (ln(x) - 1)/ln^2(x) = 0
..
(ln(x) - 1)/ln^2(x) = 0
ln(x) - 1 = 0
ln(x) = 1
log(x) na base e = 1
x = e
-
Hel
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Jan 08, 2010 20:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por Molina » Sáb Jan 09, 2010 15:33
Boa tarde, Hel.
Por favor, respeite as regras. Crie um tópico novo para sua dúvida e não utilize um tópico de outra questão para postar a sua. Assim o fórum fica mais organizado e fica arquivado sua dúvida no local certo.
Qualquer dúvida me procure.
Faça bom uso so fórum! 
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Texorras » Dom Jan 10, 2010 15:09
ainda ng respondeu ao certo ..
-
Texorras
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jan 09, 2010 13:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informatica
- Andamento: cursando
por Douglasm » Dom Abr 11, 2010 19:23
Olá Texorras. Sei que a questão já tem um tempo, mas postarei a solução mesmo assim. Para começar façamos como o D_Honda fez, e encontremos a equação:

Agora é só primitivarmos (por aqui chamamos "integral" ao invés de "primitiva", talvez isso tenha gerado uma confusão):

A fórmula usada (a da antiderivada) é:

Deste modo é só aplicarmos essa fórmula acima, em cada um dos membros:

Obs: Lembremos de adicionar a constante
C! Caso tenha dúvidas sobre o método usado, consulte o livro de cálculo ou pergunte aqui.
Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo de Primitiva
por Texorras » Sáb Jan 09, 2010 14:20
- 7 Respostas
- 2852 Exibições
- Última mensagem por Hel

Sáb Jan 09, 2010 15:47
Cálculo: Limites, Derivadas e Integrais
-
- primitiva
por rodrigonapoleao » Qua Jan 02, 2013 14:34
- 1 Respostas
- 1539 Exibições
- Última mensagem por young_jedi

Qua Jan 02, 2013 17:37
Cálculo: Limites, Derivadas e Integrais
-
- primitiva
por Ana Maria da Silva » Sáb Nov 23, 2013 13:37
- 1 Respostas
- 1378 Exibições
- Última mensagem por e8group

Sáb Nov 23, 2013 20:33
Cálculo: Limites, Derivadas e Integrais
-
- primitiva
por Ana Maria da Silva » Qui Nov 28, 2013 11:23
- 1 Respostas
- 1459 Exibições
- Última mensagem por Bravim

Sex Nov 29, 2013 00:14
Cálculo: Limites, Derivadas e Integrais
-
- primitiva
por bebelo32 » Sáb Mar 21, 2015 20:52
- 1 Respostas
- 1949 Exibições
- Última mensagem por adauto martins

Dom Mar 22, 2015 13:29
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.