• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de uma Primitiva

Calculo de uma Primitiva

Mensagempor Texorras » Sáb Jan 09, 2010 13:13

Boas pessoal,

Como consigo resolver esta primitiva ??

((x^2)+1)^3


Ja tou a bater com a cabeça nas paredes *-)
Texorras
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jan 09, 2010 13:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: Calculo de uma Primitiva

Mensagempor D_Honda » Sáb Jan 09, 2010 14:15

Texorras escreveu:Boas pessoal,

Como consigo resolver esta primitiva ??

((x^2)+1)^3


Ja tou a bater com a cabeça nas paredes *-)



Creio que seja assim:

(x^2)^3 + 3(x^2)^2 (1) + 3(x^2) (1)^2 + (1)^3

Usei o Triângulo de Pascal.

Espero ter ajudado.
Qualquer coisa, estamos ai.

Diego.
D_Honda
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 07, 2010 22:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando

Re: Calculo de uma Primitiva

Mensagempor Texorras » Sáb Jan 09, 2010 14:27

eu ja tinha usado essa expressao mas nao deu certo ... experimente primitivar voce .
Texorras
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jan 09, 2010 13:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: Calculo de uma Primitiva

Mensagempor Hel » Sáb Jan 09, 2010 14:54

Alguém pode me ajudar a resolver o gráfico f(x)= x/ln(x)
..
Calcule a derivada da função que é da forma f(x) = g(x)/h(x). Procure alguma tabela de derivadas pra te ajudar. Pra achar pontos de máximo ou mínimo, iguale a derivada a 0:
..
f´(x) = (g´(x)*h(x) - g(x)*h´(x))/(h(x))^2 = 0
..
f´(x) = ((x´)*(ln(x)) - (x)*(ln´(x)))/ln^2(x) = 0
f´(x) = (1*ln(x) - x*(1/x))/ln^2(x) = 0
f´(x) = (ln(x) - 1)/ln^2(x) = 0
..
(ln(x) - 1)/ln^2(x) = 0
ln(x) - 1 = 0
ln(x) = 1
log(x) na base e = 1
x = e
..
Não sei se esse ponto é máximo ou mínimo.
Hel
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Jan 08, 2010 20:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Calculo de uma Primitiva

Mensagempor Hel » Sáb Jan 09, 2010 15:22

Alguém pode me ajudar a resolver o gráfico f(x)= x/ln(x)

1- onde ela é decrescente e crescente;
2- mínimo e o máximo da função;
3- assíntotas
4- onde côncava e convexa

f´(x) = (g´(x)*h(x) - g(x)*h´(x))/(h(x))^2 = 0
..
f´(x) = ((x´)*(ln(x)) - (x)*(ln´(x)))/ln^2(x) = 0
f´(x) = (1*ln(x) - x*(1/x))/ln^2(x) = 0
f´(x) = (ln(x) - 1)/ln^2(x) = 0
..
(ln(x) - 1)/ln^2(x) = 0
ln(x) - 1 = 0
ln(x) = 1
log(x) na base e = 1
x = e
Hel
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Jan 08, 2010 20:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Calculo de uma Primitiva

Mensagempor Molina » Sáb Jan 09, 2010 15:33

Boa tarde, Hel.

Por favor, respeite as regras. Crie um tópico novo para sua dúvida e não utilize um tópico de outra questão para postar a sua. Assim o fórum fica mais organizado e fica arquivado sua dúvida no local certo.

Qualquer dúvida me procure.

Faça bom uso so fórum! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Calculo de uma Primitiva

Mensagempor Texorras » Dom Jan 10, 2010 15:09

ainda ng respondeu ao certo ..
Texorras
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jan 09, 2010 13:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: Calculo de uma Primitiva

Mensagempor Douglasm » Dom Abr 11, 2010 19:23

Olá Texorras. Sei que a questão já tem um tempo, mas postarei a solução mesmo assim. Para começar façamos como o D_Honda fez, e encontremos a equação:

x^6 + 3x^4 + 3x^2 + 1

Agora é só primitivarmos (por aqui chamamos "integral" ao invés de "primitiva", talvez isso tenha gerado uma confusão):

\int (x^6 + 3x^4 + 3x^2 +1)dx = \int {x^6}dx + 3 \int {x^4}dx + 3 \int{x^2}dx + \int dx

A fórmula usada (a da antiderivada) é:

\int {x^n}dx = \frac{x^{n+1}}{n+1}

Deste modo é só aplicarmos essa fórmula acima, em cada um dos membros:

\int {x^6}dx + 3 \int {x^4}dx + 3 \int{x^2}dx + \int dx = \frac{x^7}{7} + \frac{3x^5}{5} + x^3 + x + C

Obs: Lembremos de adicionar a constante C! Caso tenha dúvidas sobre o método usado, consulte o livro de cálculo ou pergunte aqui.

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.