por Maou » Qua Dez 03, 2014 13:45
Olá tudo bom, a partir desta função y(x) = (x+1)?(1-x) derivando eu chego em y'(x) = ?(1-x)+1/2(x+1)1/?(1-x) mas quando vou derivar novamente y''(x) estou me perdendo no meio dos cálculos e esta ficando cada vez maior poderiam me ajudar.
Desde já agradeço.
-
Maou
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Dez 03, 2014 13:32
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por adauto martins » Qua Dez 03, 2014 15:09
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por lucas_carvalho » Qua Dez 03, 2014 15:12
Olá!
Para derivar funções desse tipo precisamos da regra da multiplicação:
[f(x)g(x)]' = f'(x)g(x)+g'(x)f(x)
Então:
![y' =[x+1]' . \sqrt[]{1-x} + (x+1). [\sqrt[]{x-1}]' y' =[x+1]' . \sqrt[]{1-x} + (x+1). [\sqrt[]{x-1}]'](/latexrender/pictures/d3321ca13e0b997bb53c0c96eb04f665.png)
![y'=\sqrt[]{1-x} - \frac{x+1}{2\sqrt[]{1-x}} y'=\sqrt[]{1-x} - \frac{x+1}{2\sqrt[]{1-x}}](/latexrender/pictures/b26987de1767536903a2dd3f0301e509.png)
Agora é só calcular a segunda derivada, lembrado que a derivada de uma subtração é igual a subtração das derivadas:
![y''= [\sqrt[]{1-x}]' -[\frac{x+1}{2\sqrt[]{1-x}}]' y''= [\sqrt[]{1-x}]' -[\frac{x+1}{2\sqrt[]{1-x}}]'](/latexrender/pictures/4a86d40ed83682d06b2d59d945edc230.png)
![y'' = -\frac{1}{2\sqrt[]{1-x}} - \frac{1}{2}. \frac{\sqrt[]{1-x}+\frac{x+1}{2\sqrt[]{1-x}}}{1-x} y'' = -\frac{1}{2\sqrt[]{1-x}} - \frac{1}{2}. \frac{\sqrt[]{1-x}+\frac{x+1}{2\sqrt[]{1-x}}}{1-x}](/latexrender/pictures/c4e585f46c54bb61a05531f9186181e9.png)
![y'' = -\frac{1}{2\sqrt[]{1-x}}- \frac{3-x}{4\sqrt[]{(1-x)^3}} y'' = -\frac{1}{2\sqrt[]{1-x}}- \frac{3-x}{4\sqrt[]{(1-x)^3}}](/latexrender/pictures/2da260342753b73bbcdb12a34eaf7e12.png)
Espero ter ajudado!
-
lucas_carvalho
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Dez 02, 2014 20:17
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia química
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- derivada de segunda ordem
por lgbmp » Sex Set 03, 2010 19:25
- 2 Respostas
- 2897 Exibições
- Última mensagem por lgbmp

Seg Set 06, 2010 13:35
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada de segunda ordem]
por spektroos » Sáb Nov 24, 2012 23:43
- 2 Respostas
- 2078 Exibições
- Última mensagem por spektroos

Dom Nov 25, 2012 02:39
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada de segunda ordem]
por spektroos » Sáb Nov 24, 2012 23:48
- 1 Respostas
- 1441 Exibições
- Última mensagem por e8group

Dom Nov 25, 2012 10:12
Cálculo: Limites, Derivadas e Integrais
-
- Derivada de segunda ordem
por Fernandobertolaccini » Sex Jul 11, 2014 14:37
- 0 Respostas
- 914 Exibições
- Última mensagem por Fernandobertolaccini

Sex Jul 11, 2014 14:37
Cálculo: Limites, Derivadas e Integrais
-
- Derivada de primeira e segunda ordem
por Nina » Qui Nov 05, 2009 20:52
- 1 Respostas
- 4006 Exibições
- Última mensagem por marciommuniz

Sex Nov 06, 2009 13:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.