• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Estruturas Algébricas] Isomorfismo

[Estruturas Algébricas] Isomorfismo

Mensagempor Pessoa Estranha » Qui Nov 13, 2014 17:58

Olá, pessoal!

Preciso de ajuda num exercício.

"Prove que o grupo de Klein e {Z}_{4} não são isomorfos."

Eu sei que o grupo de Klein apresenta quatro elementos, sendo um deles o elemento neutro, e tais que a cada dois operados entre si, resulta no terceiro. Daí, como o exercício não especifica os elementos, tomei um genérico: G = \{e, a, b, c\}. Já o {Z}_{4} é o grupo das classes de restos, ou seja, {Z}_{4}= \left\{\frac{}{0},\frac{}{1},\frac{}{2},\frac{}{3}\right\}. O problema é que, para mim, devemos mostrar que uma f: G \rightarrow {Z}_{4} é homomorfismo bijetor. Mas, como fazer isso se o exercício não informa qual é a lei da f e muito menos as operações envolvidas ?! Pode ser burrice minha não saber disso, mas nem mesmo o livro mostra como resolver este tipo de exercício. Todos os exemplos são com f definidas, operações definidas. O livro sugere: "Tomar um possível homomofismo f e mostrar que não é bijetora".

Por favor, eu imploro por ajuda! O professor vai ficar bravo se eu perguntar, vai rir de mim. A internet não está ajudando. O livro faz apenas uma sugestão que pra mim não está fazendo sentido. Por favor, eu não sei mais o que fazer! Por favor, ajudem!!!!!!!!!!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Estruturas Algébricas] Isomorfismo

Mensagempor adauto martins » Qua Nov 19, 2014 15:03

K={e,a,b,ab},uma das formas de apresentar o grupo de KLEIN...vamos tomar uma funçao q. e bijetiva e isomorfa em Z...
f(n)=n e usa-la no problema(f sendo isomorfa em Z,entao f(n.m)=f(m)+f(n),n e m inteiros)...entao seja f:K\rightarrow{Z}_{4}/f(k)={k}^{-},onde k\in K,{k}^{-}\in {Z}_{4}logo teremos f(a(ab))=f(a)+f(ab)={1}^{-}+{3}^{-}=({1+3})^{-}={4}^{-}={0}^{-}=f(e)\Rightarrow a(ab)=e,pois f e bijetiva...entao \exists {a}^{-1}\in Ktal q. {a}^{-1}a(ab)={a}^{-1}.e={a}^{-1}\Rightarrow ab={a}^{-1}q. e uma contradiçao pois os elementos de K, so admite inverso(inverso multiplicativo ou simetrico aditivo)dele proprio...logo por f,K nao e isomorfo com {Z}_{4}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Estruturas Algébricas] Isomorfismo

Mensagempor adauto martins » Qui Nov 20, 2014 10:22

ops!uma correçao...a funçao f:Z\rightarrow Z,f bijetiva e isomorfa em Z, nao possue a propriedade q. expus,a saber...f(n.m)=f(n)+f(m),e sim os homorfismos f(n.m)=f(n).f(m),f(n+m)=f(n)+f(m),entao...
f(a+ab)=f(a)+f(ab)={1}^{-}+{3}^{-}=({1+3})^{-}={0}^{-}=f(e),com f e bijetiva teremos...
a+ab=e\Rightarrow \exists {a}^{-1}\in K / {a}^{-1}+a+ab={a}^{-1}+e={a}^{-1}\Rightarrow ab={a}^{-1},o q. e uma contradiçao em K...entao por f, K nao e isomorfo a {Z}_{4}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Estruturas Algébricas] Isomorfismo

Mensagempor Pessoa Estranha » Sex Nov 21, 2014 15:42

Desculpe, mas não entendi.
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Estruturas Algébricas] Isomorfismo

Mensagempor adauto martins » Sex Nov 21, 2014 16:53

eh grupos de klein,K sao complicados mesmo...sao isomorfos a {Z}_{2}(prove como exercicios) e {Z}_{3}(esse muito dificil),estude mais e vc compreendera a resoluçao...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Estruturas Algébricas] Isomorfismo

Mensagempor Pessoa Estranha » Sáb Nov 22, 2014 14:42

adauto martins escreveu:f(a+ab)=f(a)+f(ab)={1}^{-}+{3}^{-}=({1+3})^{-}={0}^{-}=f(e)


Por que?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Estruturas Algébricas] Isomorfismo

Mensagempor adauto martins » Sáb Nov 22, 2014 15:10

f:K\rightarrow {Z}_{4}...tomei f(n)=n,q. e bijetiva e um homomorfismo em Z,para mostrar q. K nao eh isomorfismo em {Z}_{4}...como f e homomorfismo em Z,ou melhor(Z,+),tomei a propriedade de f(n+m)=f(n)+f(m),n,m inteiro e atraves desse homomorfismo da soma,mostrar q. nao se tem um homomorfismo de K em {Z}_{4}...sejam a,b elementos de K,q. em geral e representado por K={e,a,b,a.b}...entao:
f(a+a.b)={1}^{-}+{3}^{-}=({1+3})^{-}={4}^{-}={0}^{-}=f(e),onde {Z}_{4}=({0}^{-},{1}^{-},{2}^{-},{3}^{-}),
logo como f e bijetiva,entao posso tomar seus argumentos,a+(a.b)=e,entao como K,e um grupo,existe o elemento inverso(inverso multiplicativo,ou simetrico aditivo),no nosso caso simetrico aditivo,{a}^{-1},tal q. {a}^{-1}+a+(ab)={a}^{-1}+e={a}^{-1},(ab)={a}^{-1}o q. nos leva a uma contradiçao,pois os elementos de K,somente admitem inverso(ou simetrico) deles proprios...entao K nao e isomorfo a {Z}^{4}...provamos usando a funçao bijetiva f
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Estruturas Algébricas] Isomorfismo

Mensagempor Pessoa Estranha » Sáb Nov 22, 2014 15:35

Agora melhorou... Agradeço muito o seu empenho, a sua ajuda! Até mais! :y:

Muito Obrigada
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?