• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Uso de otimização

[Derivadas] Uso de otimização

Mensagempor mikari » Dom Nov 09, 2014 20:01

Sobre o problema:
"Uma loja de camisas vende dois modelos de camisetas, Federer e Nadal. O dono da loja compra os dois modelos pelo mesmo preço, R$ 50,00, e estima que, se as camisetas Federer forem vendidas por x reais a unidade e as camisetas Nadal y reais a unidade, os fregueses comprarão 40-50x+40y camisetas Federer e 20+60x-70y camisetas Nadal por dia. Quanto o dono da loja deve cobrar pelas camisas para obter o maior lucro possível?"

Fiz o sistema de lucro como:
L(x,y) = (40-50x+40y)(x-50) + (20+60x-70y)(y-50)
e fazendo as derivadas parciais de x e y obtenho
Lx(x,y) = -100x-460+100y
Ly(x,y) = -140y+1520+100x

O que igualando a zero daria um preço de R$21,90 para X e R$26,50 para Y para que o lucro fosse o máximo possível.
Por que este meu resultado está diferindo do gabarito?
mikari
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Nov 09, 2014 19:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.