por mikari » Dom Nov 09, 2014 20:01
Sobre o problema:
"Uma loja de camisas vende dois modelos de camisetas, Federer e Nadal. O dono da loja compra os dois modelos pelo mesmo preço, R$ 50,00, e estima que, se as camisetas Federer forem vendidas por x reais a unidade e as camisetas Nadal y reais a unidade, os fregueses comprarão 40-50x+40y camisetas Federer e 20+60x-70y camisetas Nadal por dia. Quanto o dono da loja deve cobrar pelas camisas para obter o maior lucro possível?"
Fiz o sistema de lucro como:
L(x,y) = (40-50x+40y)(x-50) + (20+60x-70y)(y-50)
e fazendo as derivadas parciais de x e y obtenho
Lx(x,y) = -100x-460+100y
Ly(x,y) = -140y+1520+100x
O que igualando a zero daria um preço de R$21,90 para X e R$26,50 para Y para que o lucro fosse o máximo possível.
Por que este meu resultado está diferindo do gabarito?
-
mikari
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Nov 09, 2014 19:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Otimização de derivadas
por bilsilva » Sáb Ago 14, 2010 17:52
- 1 Respostas
- 2337 Exibições
- Última mensagem por Douglasm

Dom Ago 15, 2010 22:35
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas]- Otimização
por Lucas Monteiro » Seg Jun 25, 2012 18:49
- 2 Respostas
- 2158 Exibições
- Última mensagem por Lucas Monteiro

Ter Jun 26, 2012 17:14
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas - Otimização
por RafaF2104 » Dom Mar 05, 2017 18:01
- 0 Respostas
- 3058 Exibições
- Última mensagem por RafaF2104

Dom Mar 05, 2017 18:01
Cálculo: Limites, Derivadas e Integrais
-
- [otimização] DERIVADAS PARCIAIS
por montanha » Seg Ago 04, 2008 10:18
- 5 Respostas
- 12880 Exibições
- Última mensagem por admin

Sex Ago 08, 2008 15:14
Cálculo: Limites, Derivadas e Integrais
-
- Problema de otimização - Derivadas
por Napiresilva » Seg Out 10, 2016 15:21
- 1 Respostas
- 3094 Exibições
- Última mensagem por adauto martins

Qui Out 13, 2016 17:07
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.