• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dificudade com produto interno euclidiano

dificudade com produto interno euclidiano

Mensagempor nandooliver008 » Dom Nov 02, 2014 22:29

to em duvida na propriedade ||kv|| = |k| ||v|| na questão c)

a)encontre vetores em {R}^{2} de norma 1 cujo produto interno com vetor v= (3,-1) é zero.


b)mostre que existem infinitos vetores em {R}^{3} com norma 1 e cujo produto interno com vetor v= (1,-3,5) é zero.

c)sejá u=(4,1,2), v=(0,3,8), w=(3,1,2). obtenha as expressões.
||-2u|| + 2 ||u||

||3u-5v+w||

Na primeira tentei fazer ||(x,y)||=1 e 3x-1=0

Na c) meus resultados foram \sqrt[]{1414} e 4\sqrt[]{21}
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: dificudade com produto interno euclidiano

Mensagempor Russman » Seg Nov 03, 2014 02:43

Vetores em R^2 normalizados são da forma \frac{1}{\sqrt{a^2+b^2}}(a,b). Para que o PI seja nulo com o vetor (3,-1) é preciso que

\frac{1}{\sqrt{a^2+b^2}}3a-b=0

Ou seja, 3a=b. Portanto, os vetores de R^2 normalizados perpendiculares ao vetor (3,-1) são do tipo

\frac{1}{\sqrt{a^2 + 9a^2}}(a,3a) = \frac{1}{a\sqrt{10}}(a,3a) = \frac{1}{\sqrt{10}}(1,3)

Ou seja, na verdade a solução do problema é um único vetor.

Já para o caso do R^3 é diferente. Veja que o PI de \frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c) com (1,-3,5) nulo gera

a-3b+5c = 0

Ou seja, existem dois parâmetros livres a solução do problema. Logo, cada vetor \frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c) tal que a-3b+5c = 0 resolve o problema e existem infinitos trios a, b e c tais q isso ocorre.

Na c,

|-2u| + 2|u| = 2|u| + 2|u| = 4|u| = 4 \sqrt{4^2 + 1^2 + 2^2} = 4 \sqrt{21}

e

|3u-5v+w| =|(12-0+3 , 3-15+1 ,6-40+2 )| = |(15,-11,32)| = \sqrt{1370}

Se eu n errei nenhuma conta eu acredito q seja isso.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: dificudade com produto interno euclidiano

Mensagempor nandooliver008 » Seg Nov 03, 2014 09:02

vlw cara muito obrigado mesmo.
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: dificudade com produto interno euclidiano

Mensagempor nandooliver008 » Seg Nov 03, 2014 09:20

só mais uma duvida, pode me explicar porque em a-3b+5=0 existem 2 parâmetros? não entendi. vlw
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: dificudade com produto interno euclidiano

Mensagempor nandooliver008 » Seg Nov 03, 2014 09:37

Russman escreveu:Vetores em R^2 normalizados são da forma \frac{1}{\sqrt{a^2+b^2}}(a,b). Para que o PI seja nulo com o vetor (3,-1) é preciso que

\frac{1}{\sqrt{a^2+b^2}}3a-b=0

Ou seja, 3a=b. Portanto, os vetores de R^2 normalizados perpendiculares ao vetor (3,-1) são do tipo

\frac{1}{\sqrt{a^2 + 9a^2}}(a,3a) = \frac{1}{a\sqrt{10}}(a,3a) = \frac{1}{\sqrt{10}}(1,3)

Ou seja, na verdade a solução do problema é um único vetor.

Já para o caso do R^3 é diferente. Veja que o PI de \frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c) com (1,-3,5) nulo gera

a-3b+5c = 0

Ou seja, existem dois parâmetros livres a solução do problema. Logo, cada vetor \frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c) tal que a-3b+5c = 0 resolve o problema e existem infinitos trios a, b e c tais q isso ocorre.

Na c,

|-2u| + 2|u| = 2|u| + 2|u| = 4|u| = 4 \sqrt{4^2 + 1^2 + 2^2} = 4 \sqrt{21}

e

|3u-5v+w| =|(12-0+3 , 3-15+1 ,6-40+2 )| = |(15,-11,32)| = \sqrt{1370}

Se eu n errei nenhuma conta eu acredito q seja isso.







só mais uma duvida, pode me explicar porque em a-3b+5=0 existem 2 parâmetros? não entendi. vlw
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: dificudade com produto interno euclidiano

Mensagempor Russman » Seg Nov 03, 2014 14:46

Digamos que você escolha fixar o valor de a para, por exemplo, a=1. Então,

1-3b+5c=0

Ou seja, os valores de b e c ainda estão "amarrados" de modo que, para capturar um único vetor da forma prevista é preciso escolher duas coordenadas e calcular a terceira.

Entende?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.