• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites(assíntotas)

Limites(assíntotas)

Mensagempor Luciano Dias » Dom Jan 03, 2010 12:37

Tenho pesquisado sobre o tema, que na teoria parece fácil, mas que os livros e páginas da internet não vão direto ao assunto.
Não quero abusar aqui deixando várias perguntas em um mesmo tópico, mas é inevitável se tratando do mesmo assunto, pois realmente existem dúvidas sobre o assunto. Estudar sozinho é desse jeito.
- Como saber se uma função possui assíntotas verticais e/ou horizontais e determinar as suas equações.
Por exemplo, na função f(x) =2x^2 + 1/2x^2 -3x
Luciano Dias
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Nov 29, 2009 11:40
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em química
Andamento: cursando

Re: Limites(assíntotas)

Mensagempor Molina » Dom Jan 03, 2010 16:39

Luciano Dias escreveu:Tenho pesquisado sobre o tema, que na teoria parece fácil, mas que os livros e páginas da internet não vão direto ao assunto.
Não quero abusar aqui deixando várias perguntas em um mesmo tópico, mas é inevitável se tratando do mesmo assunto, pois realmente existem dúvidas sobre o assunto. Estudar sozinho é desse jeito.
- Como saber se uma função possui assíntotas verticais e/ou horizontais e determinar as suas equações.
Por exemplo, na função f(x) =2x^2 + 1/2x^2 -3x

Boa tarde.

Você falou que está estudando sozinho. Está seguindo algum livro?

Pois bem, para saber se uma função f(x) possui assíntotas verticais em alguma reta x=a, basta calcular o limite de f(x), com x tendendo a a. Matemáticamente, você fará \lim_{x\rightarrow a}f(x). a será uma assíntota vertical se esse limite der \pm \infty

Exemplo: A reta x=0 é uma assíntota vertical da curva y=\frac{1}{x}, pois \lim_{x\rightarrow 0}\frac{1}{x}= \infty

Agora para saber se a função g(x) possui assíntotas horizontais em alguma reta y=b, calcularemos o limite de g(x) com x tendendo ao mais e menos infinito. Matemáticamente, você fará \lim_{x\rightarrow \pm \infty}g(x). O resultado b e b` deste limite será assíntota horizontal.

Exemplo: A reta y=2 é uma assíntota horizontal da curva y=\frac{2x+3}{x+1}, pois \lim_{x\rightarrow  \infty}\frac{2x+3}{x+1}=2 e \lim_{x\rightarrow - \infty}\frac{2x+3}{x+1}=2

Lembrando que estas assíntotas horizontais que encontramos (2) nao precisa ser iguais. Neste caso esta curva possui apenas uma assíntota horizontal.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limites(assíntotas)

Mensagempor Luciano Dias » Dom Jan 03, 2010 19:18

Obrigado Diego.
Cara, entendi o que disse, suas palavras foram ótimas, a questão é que tenho alguns exercícios e daí tenho que saber se possui assíntotas, vertical e/ou horizontal e achar sua equação. Apenas me fornece a função, não tendendo a número algum. E é aí que reside o problema. Mas, fico agradecido pela ajuda. Valeu.
Ah! Estudo no livro do James Stewart, tenho entendido algumas coisas, mas meio fragmentado, por esse motivo recorro a sites como esse.
Luciano Dias
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Nov 29, 2009 11:40
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em química
Andamento: cursando

Re: Limites(assíntotas)

Mensagempor Molina » Dom Jan 03, 2010 23:22

Luciano Dias escreveu:Obrigado Diego.
Cara, entendi o que disse, suas palavras foram ótimas, a questão é que tenho alguns exercícios e daí tenho que saber se possui assíntotas, vertical e/ou horizontal e achar sua equação. Apenas me fornece a função, não tendendo a número algum. E é aí que reside o problema. Mas, fico agradecido pela ajuda. Valeu.
Ah! Estudo no livro do James Stewart, tenho entendido algumas coisas, mas meio fragmentado, por esse motivo recorro a sites como esse.

Que bom que você entendeu.

O exercício vai ser apenas isso mesmo. Vai ser dada apenas a função e você terá que calcular o limite delas para encontrar as assíntotas verticais e horizontais. Claro, que nem sempre terá.

Então você pode abrir novos tópicos com algumas questões que você tem dúvida, informando realmente qual sua dúvida (se possível mostrar até onde chegou) que alguém irá te ajudar com certeza.

Gosto do Stewart. O bom que ele trás as respostas dos ímpares, o que pode ser muito útil.

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D