• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como calcular limites de funções com seno?

Como calcular limites de funções com seno?

Mensagempor starlord » Sáb Ago 23, 2014 19:30

Olá, queria ajuda pra calcular esse limite cabeludo que veio na minha primeira lista de cálculo hehe em anexo a foto do limite.
Anexos
Capturar.JPG
starlord
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Ago 23, 2014 19:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: Como calcular limites de funções com seno?

Mensagempor adauto martins » Qui Out 23, 2014 18:07

{x}^{2}-6x+9={(x-3)}^{2},tg(1/(x-3))=-tg(x-3),pois tg1\simeq0...logo:
L=\lim_{x\rightarrow3}({x}^{2}-9)cos(({(x-3)}^{1/7}/({(x-3})^{2/5})-tg(x-3))
L=\lim_{x\rightarrow3}(x+3)(x-3)cos((\sqrt[7]{x-3})/(\sqrt[5]({{x-3})^{2}})-tg(x-3)),
(cos((\sqrt[7]{x-3})/(\sqrt[5]({{x-3})^{2}})-tg(x-3)))cos((1/(\sqrt[35]({{x-3})^{11}})-tg(x-3))...
o argumento do cosx,e um termo muito grande q. tende ao infinito,logo o maior valor q. o cosx pode assumir e 1,entao:
L=\lim_{x\rightarrow3}(x+3)(x-3)=0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Como calcular limites de funções com seno?

Mensagempor adauto martins » Qui Out 23, 2014 23:11

eita,mais uma correçao...
o argumento de cosx se torna infinito,devido ao radical (R=1/(\sqrt[35]{({x-3})^{11}}),logo cos(R-tg(x-3))=0...
fato esse q. se pode calcular fazendo cos(R+tg(x-3))...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.