• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fator integrante da Função

Fator integrante da Função

Mensagempor b11adriano » Sáb Out 18, 2014 18:47

O fator integrante da função,

dy/dx -2yx=x é dada por:
b11adriano
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Out 04, 2014 14:50
Formação Escolar: GRADUAÇÃO
Área/Curso: egenharia de produçao
Andamento: cursando

Re: Fator integrante da Função

Mensagempor adauto martins » Dom Out 19, 2014 14:28

fator integrante de uma EDO e uma funçao\mu(x)tal q.
\mu(x).(dy/dx)+\mu(x).a(x)y=\mu(x).b(x),desenvolvendo a  EDO chega-se a:\mu(x)={e}^{\int_{}^{}a(x)dx}...logo
a EDO apresentada:dy/dx-2xy=x...\mu(x)={e}^{\int_{}^{}(-2x)dx}={e}^{({-x}^{2}+k)}={e}^{-{x}^{2}}+C...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}