por b11adriano » Sáb Out 18, 2014 18:47
O fator integrante da função,
dy/dx -2yx=x é dada por:
-
b11adriano
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Out 04, 2014 14:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: egenharia de produçao
- Andamento: cursando
por adauto martins » Dom Out 19, 2014 14:28
fator integrante de uma EDO e uma funçao

tal q.

...logo
a EDO apresentada:dy/dx-2xy=x...

...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equações diferenciais] Fator integrante
por brunojorge29 » Qua Jun 19, 2013 10:52
- 2 Respostas
- 1141 Exibições
- Última mensagem por adauto martins

Ter Out 21, 2014 18:50
Cálculo: Limites, Derivadas e Integrais
-
- maior fator primo
por Marcos Ivan » Sáb Ago 21, 2010 12:29
- 1 Respostas
- 2262 Exibições
- Última mensagem por alexandre32100

Sex Set 24, 2010 17:28
Geometria Analítica
-
- /fATOR COMUM EM EVIDENCIA ME AJUDEM !!!!
por Reidson » Dom Ago 04, 2013 23:56
- 1 Respostas
- 1196 Exibições
- Última mensagem por Russman

Seg Ago 05, 2013 07:36
Álgebra Elementar
-
- [Integral Definida] Denominador c/ fator x e raiz de binômio
por Matheus Lacombe O » Dom Mar 17, 2013 17:35
- 2 Respostas
- 5730 Exibições
- Última mensagem por Matheus Lacombe O

Qua Mar 20, 2013 13:25
Cálculo: Limites, Derivadas e Integrais
-
- Técnicas de integração - multiplicando pelo fator unitário
por Victor Mello » Qui Nov 21, 2013 18:37
- 2 Respostas
- 1584 Exibições
- Última mensagem por Victor Mello

Qui Nov 21, 2013 23:27
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.