• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Derivadas com definição de limites

[Derivadas] Derivadas com definição de limites

Mensagempor concurseironf » Sex Set 05, 2014 18:11

Não entendi muito bem como utilizar esta definição dentro destas funções.

Alguém pode me ajudar a me dar uma luz por favor?
Anexos
6 - Derivadas.jpg
concurseironf
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Ago 21, 2014 12:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: cursando

Re: [Derivadas] Derivadas com definição de limites

Mensagempor DanielFerreira » Dom Set 07, 2014 22:18

Olá concurseironf,
seja bem-vindo!

Para encontrar a derivada de uma função pela definição (dada), basta substituir... Veja:

a)

Temos que f(x) = \frac{1}{x - 2}, então f(x + h) = \frac{1}{(x + h - 2)}.

Segue que,

\\ f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{\frac{1}{x + h - 2} - \frac{1}{x - 2}}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{\frac{1 \cdot (x - 2) - 1 \cdot (x + h - 2)}{(x + h - 2)(x - 2)}}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{x - 2 - x - h + 2}{(x + h - 2)(x - 2)} \times \frac{1}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{\cancel{x} - \cancel{2} - \cancel{x} - h + \cancel{2}}{h(x + h - 2)(x - 2)} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{- h}{h(x + h - 2)(x - 2)} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{- \cancel{h}}{\cancel{h}(x + h - 2)(x - 2)} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{- 1}{(x + h - 2)(x - 2)} \\\\\\ f'(x) = \frac{- 1}{(x + 0 - 2)(x - 2)} \\\\\\ \boxed{f'(x) = \frac{- 1}{(x - 2)^2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.