por YuriFreire » Ter Ago 19, 2014 23:27
Boa noite,
Gostaria de compreender a seguinte questão em anexo.
Como posso encontrar a equação para uma reta vertical que passa pelo ponto y = 4/3 se uma reta vertical não tem como achar coeficiente angular? Essa reta sendo vertical com x = -1 não é a equação x = -1? Ou seja para todo y, x = -1.
- Anexos
-

-
YuriFreire
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Ago 08, 2014 00:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Medicina/Licenciatura em Matemática
- Andamento: cursando
por YuriFreire » Sáb Ago 23, 2014 22:07
Alguém??
Ainda to precisando de ajuda. Sei que é questão besta.
Grato,
Yuri Freire
-
YuriFreire
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Ago 08, 2014 00:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Medicina/Licenciatura em Matemática
- Andamento: cursando
por DanielFerreira » Sáb Ago 23, 2014 22:25
Olá
Yuri,
boa noite!
A equação da reta é dada por

. Ora, marquemos o ponto (- 1, 4/3) no plano cartesiana e prolonguemos a vertical; como podes notar, a equação da reta também passará pelo ponto (- 1, 0).
Resta-nos encontrar a equação...

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por YuriFreire » Seg Set 01, 2014 22:42
Obrigado meu caro!
Aprendi a fazer!!
-
YuriFreire
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Ago 08, 2014 00:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Medicina/Licenciatura em Matemática
- Andamento: cursando
por DanielFerreira » Dom Set 07, 2014 21:23
Que bom! Até a próxima.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação da Reta] Reta que passa por pontos do plano.
por acorreia » Qua Mai 02, 2012 17:31
- 1 Respostas
- 2366 Exibições
- Última mensagem por Russman

Qua Mai 02, 2012 21:25
Geometria Analítica
-
- [Estudo da reta] Determinar a equação de uma reta
por Isabelagarcia » Qui Jul 24, 2014 23:45
- 0 Respostas
- 1518 Exibições
- Última mensagem por Isabelagarcia

Qui Jul 24, 2014 23:45
Geometria Analítica
-
- [Equação da reta] Encontrando equação paramétrica.
por Vitor Sanches » Qua Jun 26, 2013 17:54
- 0 Respostas
- 5998 Exibições
- Última mensagem por Vitor Sanches

Qua Jun 26, 2013 17:54
Geometria Analítica
-
- Equação da Reta
por aline2010 » Dom Jun 13, 2010 23:16
- 1 Respostas
- 1590 Exibições
- Última mensagem por Elcioschin

Seg Jun 14, 2010 12:16
Geometria Analítica
-
- Equação da reta
por marcio277 » Sex Nov 19, 2010 15:04
- 1 Respostas
- 1468 Exibições
- Última mensagem por Molina

Sex Nov 19, 2010 15:13
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.