por carlospires78 » Ter Out 27, 2009 09:19
seja f uma função real

x


:f(x+a)=1/2+
![\sqrt[]{} \sqrt[]{}](/latexrender/pictures/fe30ef6b9007d97ba11036078c300fe0.png)
f(x)-[f(x)]².F é periódica? justifique.
SEQUINDO O ENUNCIADO USEI O CONCEITO DE FUNÇÃO PERIÓDICA F(x+a)=f(x) , mas não consigo mostrar que ela é periódica .
-
carlospires78
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Out 27, 2009 08:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por BlackFoxes » Sáb Dez 26, 2009 05:08
Olá. Também raciocinei assim. Se

para todo x, então f é periódica. Basta provar que a igualdade é verdadeira ou não.
Logo:
![f(x)=\frac{1}{2}+\sqrt[2]{f(x)-{f(x)}^{2}} f(x)=\frac{1}{2}+\sqrt[2]{f(x)-{f(x)}^{2}}](/latexrender/pictures/3aa9bf0f7b46ff67f1843acca956b88f.png)



Ok, a função constante é periódica. Porém eu fiquei um pouco confuso, pois f é apenas períodica se f(x) assume os valores encontrados, porém
não necessariamente o faz.Espero que tenha ajudado em alguma coisa.
Abraços
-
BlackFoxes
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Dez 26, 2009 04:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dízimas Periódicas - Indução
por m0x0 » Seg Set 12, 2011 17:10
- 0 Respostas
- 763 Exibições
- Última mensagem por m0x0

Seg Set 12, 2011 17:10
Álgebra Elementar
-
- Encontre a fração geratriz da seguintes dizimas periódicas
por andersontricordiano » Sáb Abr 16, 2011 15:46
- 1 Respostas
- 2734 Exibições
- Última mensagem por Abelardo

Sáb Abr 16, 2011 16:23
Progressões
-
- exercicio resolv.funçoes
por adauto martins » Qui Ago 16, 2018 19:29
- 1 Respostas
- 3214 Exibições
- Última mensagem por adauto martins

Qui Ago 16, 2018 19:54
Funções
-
- exercicio resolv.funçoes
por adauto martins » Qua Jun 13, 2018 13:16
- 2 Respostas
- 3968 Exibições
- Última mensagem por adauto martins

Sex Jun 15, 2018 17:03
Funções
-
- exercicio resolv.-funçoes
por adauto martins » Ter Jul 31, 2018 20:41
- 1 Respostas
- 2897 Exibições
- Última mensagem por adauto martins

Ter Jul 31, 2018 21:14
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.