• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inexistência de um limite

Inexistência de um limite

Mensagempor fisicanaveia » Sáb Ago 16, 2014 00:21

Quais são todas as possibilidades da inexistência de um limite ? Eu sei que o limite não existe quando os limites laterais são diferentes, mas existem outros motivos ?
fisicanaveia
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Ago 16, 2014 00:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Inexistência de um limite

Mensagempor Man Utd » Sáb Ago 16, 2014 18:42

fisicanaveia escreveu:Quais são todas as possibilidades da inexistência de um limite ? Eu sei que o limite não existe quando os limites laterais são diferentes, mas existem outros motivos ?



Sim existe outros como por exemplo :


lim x->infinito senx=valor indefinido entre -1 e 1


pois quando "x" tende a mais infinito a função seno ficará oscilando em -1 e 1.Logo não existe limite, pois se existisse o limite seria um valor real único.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Inexistência de um limite

Mensagempor fisicanaveia » Sáb Ago 16, 2014 22:57

Ok. Então, considerando : \lim_{x\rightarrow a} f(x) , podemos dizer, generalizando, que quando os valores de f(x) não tendem a um n° fixo quando x tende a 'a' , aí o Limite não existe ?! Mas tirando isso, não existe nenhum outro caso ?
fisicanaveia
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Ago 16, 2014 00:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Inexistência de um limite

Mensagempor Man Utd » Dom Ago 17, 2014 12:37

fisicanaveia escreveu:Ok. Então, considerando : \lim_{x\rightarrow a} f(x) , podemos dizer, generalizando, que quando os valores de f(x) não tendem a um n° fixo quando x tende a 'a' , aí o Limite não existe ?!


Sim.Se existir o limite, o limite tem que ser único.





fisicanaveia escreveu:Mas tirando isso, não existe nenhum outro caso ?



Existe os casos de quando "x" tende a valores que não estão no domínio, mas esse caso recai em limites laterais diferentes :

lim x->0 \sqrt{x}



observe que quando "x" tende a valores maiores que 0 , o limite é zero, mas quando "x" tende a valores menores que 0 (isto é valores negativos), o limite não existe pois a função raiz quadrada de x só está definida para [0,+infinito) .
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Inexistência de um limite

Mensagempor fisicanaveia » Seg Ago 25, 2014 20:11

Então, voltaria a questão de limites diferentes ?
fisicanaveia
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Ago 16, 2014 00:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Inexistência de um limite

Mensagempor Man Utd » Qua Ago 27, 2014 19:15

fisicanaveia escreveu:Então, voltaria a questão de limites diferentes ?



De certa maneira sim.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}