• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Bijeções] Como proceder nesse tipo de questão?

[Bijeções] Como proceder nesse tipo de questão?

Mensagempor IlgssonBraga » Sáb Jul 26, 2014 15:30

Sejam f:X\rightarrow Y e g:Y\rightarrow Z funções. Demonstre que:
Se gof é injetora e f é sobrejetora, então g é injetora. Onde gof=g(f(x)).
IlgssonBraga
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jul 18, 2013 10:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: [Bijeções] Como proceder nesse tipo de questão?

Mensagempor ant_dii » Sáb Jul 26, 2014 16:32

Por definição, como f é sobrejetora, para qualquer y \in Y existe, pelo menos, um x \in X tal que f(x)=y.

Também por definição, como g\circ f é injetora segue que para x_1\neq x_2 em X implica que (g \circ f)(x_1) \neq (g \circ f)(x_2) em Z.

Mas (g \circ f)(x_1)=g(f(x_1))=g(y_1) e (g \circ f)(x_2)=g(f(x_2))=g(y_2) para y_1=f(x_1) e y_2=f(x_2).

Logo, x_1\neq x_2 em X implica que g(f(x_1))\neq g(f(x_2)) em Z, ou seja, g é injetora. Note que f "cobre" todos os elementos de Y, por ser sobrejetora ,portanto a implicação acima vale para qualquer elemento de Y.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: [Bijeções] Como proceder nesse tipo de questão?

Mensagempor IlgssonBraga » Sáb Jul 26, 2014 16:42

Muito obrigado !!!
IlgssonBraga
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jul 18, 2013 10:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59