por Carolminera » Qua Jul 23, 2014 11:33
Determine a equação da reta tangente a elipse :
no ponto (Xo, Yo).
Alguém pode me ajudar?
Obrigada!
-
Carolminera
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Qua Jul 02, 2014 15:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Médica
- Andamento: cursando
por Russman » Qua Jul 23, 2014 21:08
Vamos deduzir uma fórmula útil que determina a reta tangente ao ponto

dada qualquer função

. Esta você poderá usar
sempre que uma questão envolver a busca da reta tangente a um gráfico em um ponto.
Seja

a reta tangente ao gráfico de

no ponto

. Sabemos que a inclinação da reta

é

. Entenda como a derivada de

aplicada no ponto cujo

.
Daí,

. Agora, se a reta tangencia a função então ambas valem o mesmo valor no ponto de tangência. Ou seja,

Assim,

de onde

.
Portanto, a reta tangente ao gráfico de

no ponto

é

.
Tente prosseguir.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada reta tangente ao gráfico
por Carolminera » Dom Jul 06, 2014 16:53
- 1 Respostas
- 2472 Exibições
- Última mensagem por e8group

Dom Jul 06, 2014 20:11
Cálculo: Limites, Derivadas e Integrais
-
- TRAÇAR O GRÁFICO DA RETA TANGENTE
por ton_cineasta » Qui Abr 05, 2018 18:26
- 2 Respostas
- 6790 Exibições
- Última mensagem por ton_cineasta

Seg Abr 09, 2018 15:47
Cálculo: Limites, Derivadas e Integrais
-
- A reta tangente ao gráfico da função (derivadas)
por Ana Maria da Silva » Dom Jun 09, 2013 21:43
- 2 Respostas
- 1930 Exibições
- Última mensagem por Ana Maria da Silva

Qua Jun 12, 2013 20:27
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] Reta tangente e Reta perpendicular
por antonelli2006 » Ter Nov 22, 2011 11:21
- 1 Respostas
- 8535 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 14:28
Cálculo: Limites, Derivadas e Integrais
-
- Derivada - Reta tangente
por emsbp » Qua Mai 02, 2012 18:28
- 2 Respostas
- 1777 Exibições
- Última mensagem por emsbp

Qui Mai 03, 2012 11:38
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.