por DanielFerreira » Dom Jul 20, 2014 13:15
Olá fff,
boa tarde!
Sabemos que

;
Façamos

por conseguinte

, então:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por e8group » Dom Jul 20, 2014 16:14
Boa tarde a todos ...
Alternativamente , fixado

, defina

. Dizer que

equivale dizer que para qualquer

dado , existe

(correspondente ) tal que se

então

.
Segue que
![\frac{f(a+h) -f(a-h) }{2h} -f'(a) = \frac{f(a+h) -f(a) -(f(a-h) -f(a)) }{2h} -f'(a) = g(h) - \frac{f(a +(-h) ) -f(a)}{2h} -f'(a) = \frac{1}{2} \left[ g(h) - f'(a) - g(-h) - f'(a) \right] \frac{f(a+h) -f(a-h) }{2h} -f'(a) = \frac{f(a+h) -f(a) -(f(a-h) -f(a)) }{2h} -f'(a) = g(h) - \frac{f(a +(-h) ) -f(a)}{2h} -f'(a) = \frac{1}{2} \left[ g(h) - f'(a) - g(-h) - f'(a) \right]](/latexrender/pictures/b84640858021fb205aac98b2736dbc3d.png)
.
. Aplicando o módulo e usando a desigualdade triangular , temos

.
Mas , se

então

. Desta forma , obtemos que ambas quantidades

e

são limitadas por

e por isso

o que prova formalmente que o limite

existe e vale

.
Viva a matemática ...
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada num ponto pela definição
por emsbp » Sex Jul 13, 2012 16:52
- 1 Respostas
- 1489 Exibições
- Última mensagem por Russman

Sex Jul 13, 2012 18:09
Cálculo: Limites, Derivadas e Integrais
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10700 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] DERIVADA POR DEFINIÇÃO DA RAIZ DO MÓDULO DE X
por Matheusgdp » Qua Set 16, 2015 04:07
- 2 Respostas
- 4963 Exibições
- Última mensagem por Matheusgdp

Qui Set 17, 2015 18:31
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] Duvida em derivada da definição.
por paulohenrique_ » Dom Dez 09, 2012 16:05
- 1 Respostas
- 1835 Exibições
- Última mensagem por young_jedi

Dom Dez 09, 2012 18:12
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Derivada por definição
por temujin » Qui Mai 16, 2013 13:07
- 4 Respostas
- 2404 Exibições
- Última mensagem por Man Utd

Sex Mai 17, 2013 18:50
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.