por ulisses123 » Dom Jul 13, 2014 16:21
sendo A(2,4) e B(5,2),prove que a expressão A+(1:4)AB,representa um ponto de [AB]
-
ulisses123
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 20, 2014 14:48
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso tecnico em gestao
- Andamento: formado
por e8group » Dom Jul 13, 2014 19:03
Um segmento de retas é o conjunto
![\{ tB + (1-t) A ; t \in [0,1] \} = \{A + t \cdot AB ; t \in [0,1] \} \{ tB + (1-t) A ; t \in [0,1] \} = \{A + t \cdot AB ; t \in [0,1] \}](/latexrender/pictures/205e887b7c49e6afd4e7353d4ef08871.png)
. E
![\frac{1}{4} \in [0,1] \frac{1}{4} \in [0,1]](/latexrender/pictures/372a7260cb2f44c3986f948615fbe148.png)
então ...
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por ulisses123 » Seg Jul 14, 2014 16:01
muito obrigado
-
ulisses123
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 20, 2014 14:48
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso tecnico em gestao
- Andamento: formado
Voltar para Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.