• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada estudo de sinal

Derivada estudo de sinal

Mensagempor Carolminera » Dom Jul 06, 2014 15:02

Seja
g(x)= x / x^2 + 1

(i) Determine os pontos do gráfico de g em que as retas tangentes, nestes pontos, sejam
paralelas ao eixo x.
(ii) Estude o sinal de g(x).
(iii) Calcule:
g(x) \lim_{\rightarrow+ \infty}
e g(x) \lim_{\rightarrow- \infty}


(iv) Utilizando as informações acima, faça um esboço do gráfico de g.
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Derivada estudo de sinal

Mensagempor e8group » Dom Jul 06, 2014 20:35

O que você tentou , quais as dúvida especificas ?

Dicas

(i) Retas paralelas ao eixo x (y = 0  \cdot x + 0  , x \in \mathbb{R} ) possuem o coeficiente angular nulo . São retas descritas por equações como por exemplo y = 0 \cdot x +  0.956532265656523265656 ; y = 0 \cdot x +\pi ^{\pi^{\pi}} onde x varia-se livremente nos conjunto dos reais .

(ii) Quando g(x) = 0 , g(x) < 0 e g(x) > 0 , para que números reais cada caso acontecerá ??


(iii)

g é uma função racional (razão entre polinômios) , estudar o comportamento de g no infinito corresponde a estudar a tendência entre a razão do termo dominante presente do numerador de g(x) pelo termo dominante presente no denominador desta aplicação .

Este item se resume a computar lim_{x\to \pm\infty }  \frac{x}{x^2}  =      lim_{x\to \pm \infty }  \frac{1}{x} =  ... .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}