• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada estudo de sinal

Derivada estudo de sinal

Mensagempor Carolminera » Dom Jul 06, 2014 15:02

Seja
g(x)= x / x^2 + 1

(i) Determine os pontos do gráfico de g em que as retas tangentes, nestes pontos, sejam
paralelas ao eixo x.
(ii) Estude o sinal de g(x).
(iii) Calcule:
g(x) \lim_{\rightarrow+ \infty}
e g(x) \lim_{\rightarrow- \infty}


(iv) Utilizando as informações acima, faça um esboço do gráfico de g.
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Derivada estudo de sinal

Mensagempor e8group » Dom Jul 06, 2014 20:35

O que você tentou , quais as dúvida especificas ?

Dicas

(i) Retas paralelas ao eixo x (y = 0  \cdot x + 0  , x \in \mathbb{R} ) possuem o coeficiente angular nulo . São retas descritas por equações como por exemplo y = 0 \cdot x +  0.956532265656523265656 ; y = 0 \cdot x +\pi ^{\pi^{\pi}} onde x varia-se livremente nos conjunto dos reais .

(ii) Quando g(x) = 0 , g(x) < 0 e g(x) > 0 , para que números reais cada caso acontecerá ??


(iii)

g é uma função racional (razão entre polinômios) , estudar o comportamento de g no infinito corresponde a estudar a tendência entre a razão do termo dominante presente do numerador de g(x) pelo termo dominante presente no denominador desta aplicação .

Este item se resume a computar lim_{x\to \pm\infty }  \frac{x}{x^2}  =      lim_{x\to \pm \infty }  \frac{1}{x} =  ... .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.