• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TAXAS RELACIONADAS

TAXAS RELACIONADAS

Mensagempor Daniela[ » Sáb Jul 05, 2014 15:15

Boa Tarde

Estou com dúvida em duas resoluções de problemas envolvendo taxas relacionadas, gostaria de um auxílio!

1- O ar está sendo bombeado para dentro de um balão esférico á taxa de 4,5 polegadas cúbicas por minuto. Ache a taxa de variação do raio quando este é de 2 polegadas. Lembrando que o volume da esfera é dado por V= 4pir³/3.


2- Uma pedra cai livremente em um lago parado. Ondas circulares se espalham e o raio da região afetada aumenta a uma taxa de 16cm/s. Qual a taxa de variação da área em relação ao tempo, quando o raio da região for de 4cm? (A=pir²)


NO AGUARDO!
OBRIGADA
Daniela[
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jul 05, 2014 14:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia quimica
Andamento: cursando

Re: TAXAS RELACIONADAS

Mensagempor young_jedi » Sáb Jul 05, 2014 15:34

derivando o volume com relação ao tempo teremos

\frac{dV}{dt}=\frac{4\pi}{3}.3r^2.\frac{dr}{dt}

\frac{dV}{dt}=4\pi.r^2.\frac{dr}{dt}

como a taxa de variação do volume é igual a taxa de ar que esta sendo bombeado

4,5=4.\pi.2^2.\frac{dr}{dt}

\frac{dr}{dt}=\frac{4,5}{16\pi}

a segunda equação é parecida é só derivar e substituir valores tente concluir e comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: TAXAS RELACIONADAS

Mensagempor Daniela[ » Dom Jul 06, 2014 11:30

Bom dia!

Obrigada consegui intender e fazer, e cheguei no resultado que tenho aqui 0,09 pol/min.


E a outra você conseguiria me auxiliar, tenho a resposta de 128 pi cm²/s, mais tentei e não chego no raciocinio correto, se poderes me auxiliar!

Muito Obrigada!
Daniela[
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jul 05, 2014 14:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia quimica
Andamento: cursando

Re: TAXAS RELACIONADAS

Mensagempor young_jedi » Dom Jul 06, 2014 14:25

Tudo bem

Utilizando a equação da area

A=\pi.r^2

derivando de maneira implicita com relação ao tempo

\frac{dA}{dt}=\pi.2r.\frac{dr}{dt}

como \frac{dr}{dt}=16 para r=4 teriamos

\frac{dA}{dt}=\pi.2.4.16

\frac{dA}{dt}=128\pi
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.