• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Questão Envolvendo Calendário]

[Questão Envolvendo Calendário]

Mensagempor Maria77 » Dom Jun 29, 2014 19:00

Olá

Uma colega me pediu ajuda mas não consegui responder a questão. A pergunta seria mais ou menos assim:

O aniversário de Maria cai todo ano numa quarta feira, assim podemos afirmar que Maria faz aniversário em qual mês:
Fiquei em dúvida porque não tem como o aniversário cair sempre no mesmo dia da semana ou tem?


Obrigada
Maria77
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 28, 2014 00:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Questão Envolvendo Calendário]

Mensagempor e8group » Dom Jun 29, 2014 23:22

Falso , não ?
Suponha que a moça nasceu em alguma data correspondente ao ano k .

Defina a relação(não é função , mas td bem ...ajudará organizar as ideias ) G_k :  \{1,2,3, \hdots , 31  \} \times \{1,2,...,12\text\}  \times \{k\}  \mapsto \{\text{dom} , \text{seg} ,\text{terc} , \hdots , \text{sab} \} .

(

Por simplicidade (S.P.G) , vamos supor que em 1:1:k é domingo .Então temos G_k(1,1,k) = \text{dom} ,

G_k(2,1,k) = \text{seg} (significa 2:1:k é segunda ) ... .

Suponha ano k não bissexto (se for não problemas )

Agora forme grupos de 7 dias , escolhendo dos 7 primeiros do ano ao último . Note que , 365 = 52 \cdot 7 +1 , ou seja , temos 52 grupos de 7 dias dos quais cada membro ; uma configuração da forma (Dia do mês , Nome do mês , Ano ) , ou seja , uma tripla ordenada (x,y,k) \in  \{1,2,3, \hdots , 31 \} \times \{1,2,...,12\text\}  \times \{k\} . Analisando o último grupo de 7 dias , temos que G_k(30,12,k) = \text{sab} o que implica que

G_k(31,12,k) = \text{dom} o que implica que G_{k+1}(1,1,k+1)  = \text{seg} (aqui novo ano ) que é diferente de G_{k}(1,1,k) = \terc{dom} (dias da semana distinto ) , ..., aplicando o mesmo raciocínio 364 vezes vemos que G_k(a,b,k) \neq  G_{k+1} (a,b,k+1) para todo (a,b) em que a configuração (Dia do mês , Nome do mês , k ) faz sentido .

O que quero dizer com isso , se a moça fizer(ou fez) niver na quarta no ano k , no ano k+1 ela comemorá na quinta que é o dia da semana de seu niver .E além disso note que k é genérico .Portanto impossível .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.