• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular um terceiro lado do triângulo com apenas dois lados

Calcular um terceiro lado do triângulo com apenas dois lados

Mensagempor Sohrab » Dom Jun 15, 2014 02:55

Amigos, estou com dificuldade em um problema que me parecia ser deveras simples.

Preciso calcular o terceiro lado de um triângulo, para encontrar seus ângulos internos que serão usados na decomposição vetorial de forças em um problema mecânico.

Desenhei o diagrama das medidas conhecidas e o valor que preciso (o x em vermelho).

Tentei por mais de uma hora e não consegui nada.. Alguém pode me dar uma força?

Imagem

Obrigado!
Sohrab
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Mar 18, 2010 17:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Téc. em Mec. Usinagem e Info Programação
Andamento: cursando

Re: Calcular um terceiro lado do triângulo com apenas dois l

Mensagempor e8group » Dom Jun 15, 2014 13:18

Como nem tudo que se vê é o que parece ser , faço uma pergunta : O diagrama representa um trapézio ?

Se sim ! Segue uma dica .

Considere o ABC o triangulo isósceles com AB e AC congruentes e base BC e ACD o triângulo de lados medindo \overline{AC} = x ,  \overline{AD} = 3 , \overline{AD}

 Tome como verdade ( ou prove ) que [tex] \overline{AM} é a altura do trapézio . Em seguida , tome P a interseção da reta que contém a base maior do trapézio com à reta que passa por C e é paralela a reta que contém AM . Aceite (ou mostre) que AM e CP são congruentes e por conseguinte \overline{AM} = \overline{CP} ,segue-se que

\overline{PD} = 1(Pq ?) .Como o triângulo PCD é T. retângulo , então pelo Teo. de Pitágoras ,

\overline{CD}^2 = \overline{PD}^2  + \overline{CP}^2 o que implica que \overline{AM} = \sqrt{3} . Em seguida aplicando o Teo. de Pitágoras em AMB obterá x .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59