• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral da expressão.

integral da expressão.

Mensagempor nandooliver008 » Sex Jun 06, 2014 15:47

qual a derivada da expressão
\frac{{2x}^{2}}{x^4+1}
qual tecnica deve ser usada.
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: integral da expressão.

Mensagempor alienante » Sáb Jun 07, 2014 20:40

regra do quociente:\frac{d}{dx}\left[\frac{f}{g} \right]=\frac{f´g-fg´}{g^2}\Rightarrow\frac{d}{dx}\left[\frac{2x^2}{x^4+1} \right]=\frac{4x(x^4+1)-2x^2(3x^3)}{(x^4+1)^2}=\frac{2x(2-3x^4)}{(x^4+1)^2}
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?