• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo do valor esperado E[X] (ou esperança)

Cálculo do valor esperado E[X] (ou esperança)

Mensagempor taunus » Sáb Mai 24, 2014 10:42

Boas
Estou com uma dificuldade na resolução deste exercício, visto que não consigo aplicar as propriedades do valor esperado neste caso:
Considere uma variável aleatória X tal que E[(X-1)^2] = 10, E[(X-2)^2] = 5.
Calcule:
3.1. O valor esperado de X.
Não consigo calcular o valor esperado pelo facto do X estar em potência de 2
taunus
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mai 24, 2014 10:38
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: Cálculo do valor esperado E[X] (ou esperança)

Mensagempor e8group » Sáb Mai 24, 2014 18:22

Sou 99.9999 .... % leigo no assunto . Mas vendo a definição de E , independente de X ser discreto ou não , afirmamos que E é linear . Assim sendo , temos

E((X+k)^2) =  E(X^2 +2kX +k^2)  = E(x^2) + 2k E(X) + k^2 (1) .

Faça k= -1 e k = -2 ,de (1) ganhamos o sistema

\begin{cases}  E((X -1)^2)  = E(x^2)  -2 E(X) +1 \\   E((X -2)^2)  =  E(x^2)  -4 E(X) +4  \end{cases} .

Resolva para E(X) . Boa sorte !

Ps.: Não se preocupe E(X^2) , isso pq E(X^2) + (- E(X^2)) = 0 e qualquer solução da combinação linear não nula de E((x-1)^2) , E((x-2)^2) é também solução do sistema e a recíproca tbm é verdadeira .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Cálculo do valor esperado E[X] (ou esperança)

Mensagempor taunus » Sáb Mai 24, 2014 19:22

Obrigado pela sua intervenção

No entanto não consigo compreender o seu Ps, pois fico com duas equações e uma só incógnita, o que me dá dois possíveis valores esperados E(x) se igualar a 10 e 5 respectivamente. Outra coisa que não entendi foi como eliminou o E(x^2) visto que para tal teria de igualar as duas equações.
taunus
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mai 24, 2014 10:38
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: Cálculo do valor esperado E[X] (ou esperança)

Mensagempor e8group » Sáb Mai 24, 2014 22:08

Ooops ! Na verdade não equivalente e sim uma implicação obvia . Já estudou G.A. ? Se sim , podemos interpretar qualquer sistema linear 2 por 2 como interseção entre duas retas , que em geral se exprimem por ax+by +c = 0 . (a,b,c constantes com a ,b não simultaneamente nulas )

De forma geral , qualquer sistema linear m equações para n incógnitas pode ser visto como interseção entre m hiperplanos do \mathbb{R}^n .

Por exemplo se m = 2 e n = 3 , o sistema de equações representa geometricamente uma reta no \mathbb{R}^3 (caso os planos não são paralelos ) .


Se quiser mais explicações com este foco , só dizer .

De forma sucinta , ( E(x^2) , E(x) ) , corresponde a solução (x,y) do sistema

\begin{cases} x -2y -9 = 0 \\ x -4y -1 = 0  \end{cases} .

Se você esboçar o gráfico de ambas retas verá que a interseção entre elas se resume a um ponto . Como queremos encontrar apenas y , basta multiplicar uma das equações por um número conveniente de modo que está equação multiplicada por este número somada a outra equação se resume apenas uma equação de uma variável y .

As contas deixo para você .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D