• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analítica - Circunferência

Geometria Analítica - Circunferência

Mensagempor matheus_frs1 » Dom Mai 11, 2014 00:34

Determine o valor de m para que a circunferência de equação x²+y²-8x-my=-2 passe pelo ponto P=(8,-2).

Se vocês puderem não só jogar a resolução, mas me explicarem como devo fazer seria de uma grande ajuda.

Mt obrigado.
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Geometria Analítica - Circunferência

Mensagempor Russman » Dom Mai 11, 2014 01:19

.
Editado pela última vez por Russman em Dom Mai 11, 2014 01:21, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Geometria Analítica - Circunferência

Mensagempor Russman » Dom Mai 11, 2014 01:19

Dizer que uma função qualquer f(x) "passa pelo ponto" , por exemplo, (a,b) é o mesmo que dizer que f(a) = b. Isto é, se você calcular a função em x=a vai obter b.

Exemplo:

Determine m tal que y^2 + mx-1 = 0 passe pelo ponto (1,2).

A forma mais simples de solucionar este problema é substituir y=2 e x=1 em y^2 + mx-1 = 0 e obter uma equação em m. Veja:

2^2 +m.1-1=0
4+m-1=0
3+m=0
m=-3

Tente proceder da mesma forma para a circunferência. Você deve calcular, acho eu, m=-3 também! ( Feliz coincidência. hahah)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Geometria Analítica - Circunferência

Mensagempor matheus_frs1 » Dom Mai 11, 2014 10:15

Ah, jura que é só isso, Russman? Eu pensei que teria que achar a equação reduzida da circunferência e achar os valores a partir daí. Dessa maneira a gente cai em uma simples equação de primeiro grau, e realmente m = -3.

Obrigado pela ajuda, e só uma outra pergunta... toda questão desse tipo (determinar o parâmetro m) eu posso usar o mesmo raciocínio?
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Geometria Analítica - Circunferência

Mensagempor Russman » Dom Mai 11, 2014 15:44

matheus_frs1 escreveu:Ah, jura que é só isso, Russman?


Acredito que seja. Foi a forma mais imediata que pensei.

matheus_frs1 escreveu:toda questão desse tipo (determinar o parâmetro m) eu posso usar o mesmo raciocínio?


Depende. Se for uma questão de "passar pelo ponto", na maioria das vezes é.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}