por matheus_frs1 » Dom Mai 11, 2014 00:34
Determine o valor de m para que a circunferência de equação x²+y²-8x-my=-2 passe pelo ponto P=(8,-2).
Se vocês puderem não só jogar a resolução, mas me explicarem como devo fazer seria de uma grande ajuda.
Mt obrigado.
-
matheus_frs1
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Mar 04, 2014 12:36
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso Técnico em Eletroeletrônica
- Andamento: cursando
por Russman » Dom Mai 11, 2014 01:19
.
Editado pela última vez por
Russman em Dom Mai 11, 2014 01:21, em um total de 1 vez.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Russman » Dom Mai 11, 2014 01:19
Dizer que uma função qualquer

"passa pelo ponto" , por exemplo,

é o mesmo que dizer que

. Isto é, se você calcular a função em

vai obter

.
Exemplo:
Determine

tal que

passe pelo ponto

.
A forma mais simples de solucionar este problema é substituir

e

em

e obter uma equação em

. Veja:




Tente proceder da mesma forma para a circunferência. Você deve calcular, acho eu,

também! ( Feliz coincidência. hahah)
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por matheus_frs1 » Dom Mai 11, 2014 10:15
Ah, jura que é só isso, Russman? Eu pensei que teria que achar a equação reduzida da circunferência e achar os valores a partir daí. Dessa maneira a gente cai em uma simples equação de primeiro grau, e realmente m = -3.
Obrigado pela ajuda, e só uma outra pergunta... toda questão desse tipo (determinar o parâmetro m) eu posso usar o mesmo raciocínio?
-
matheus_frs1
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Mar 04, 2014 12:36
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso Técnico em Eletroeletrônica
- Andamento: cursando
por Russman » Dom Mai 11, 2014 15:44
matheus_frs1 escreveu:Ah, jura que é só isso, Russman?
Acredito que seja. Foi a forma mais imediata que pensei.
matheus_frs1 escreveu:toda questão desse tipo (determinar o parâmetro m) eu posso usar o mesmo raciocínio?
Depende. Se for uma questão de "passar pelo ponto", na maioria das vezes é.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria analitica-circunferencia
por xandeshaffer » Qua Set 12, 2012 19:33
- 1 Respostas
- 3025 Exibições
- Última mensagem por LuizAquino

Sex Set 14, 2012 16:14
Geometria Analítica
-
- geometria analitica circunferencia
por caciano-death » Sex Fev 05, 2016 21:30
- 0 Respostas
- 1902 Exibições
- Última mensagem por caciano-death

Sex Fev 05, 2016 21:30
Geometria Analítica
-
- [Geometria Analítica - Circunferência] Raio
por raimundoocjr » Dom Dez 16, 2012 18:14
- 2 Respostas
- 2860 Exibições
- Última mensagem por raimundoocjr

Dom Dez 16, 2012 19:37
Geometria Analítica
-
- Geometria Analitica - Circunferência - Duvida
por PiterPaulo » Sáb Mai 11, 2013 21:12
- 0 Respostas
- 1363 Exibições
- Última mensagem por PiterPaulo

Sáb Mai 11, 2013 21:12
Geometria Analítica
-
- [Geometria Analítica] Reta Tangente a Circunferência
por RasecAlmeida » Qui Out 16, 2014 13:57
- 1 Respostas
- 1699 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:19
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.