• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Coplanaridade

Coplanaridade

Mensagempor MtHenrique » Seg Mai 05, 2014 22:51

Verifique se os seguintes pontos são coplanares: A(2,2,1), B(3,1,2), C(2,3,0) e D (2,3,2);
MtHenrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 04, 2014 11:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Coplanaridade

Mensagempor e8group » Ter Mai 06, 2014 01:33

Em outras palavras , queremos verificar se estes pontos estão em um mesmo plano .Para tal , há mais de um método . Já aprendeu produto vetorial , interno ? Caso sim , uma forma é tomar o produto misto entre os três vetores construídos (usando todos os pontos dados ) e verificar o resultado. Caso não , veremos outra forma ...

Primeiro como definir a eq. de uma plano na forma paramétrica

Considere os pontos A, B , C(não colineares ) pertencendo a um plano \pi \subset \mathbb{R}^3 .
Podemos construir os vetores v_1 = \vec{AB}  ,  v_2 = \vec{AC} e ambos são paralelos a \pi .

Agora seja D um ponto qualquer deste plano [/tex] . Construímos o vetor \vec{AD} , vemos que \vec{AD} se exprimir como soma de dois vetores , um paralelo a v_1 e o outro a v_2 . Ou seja é ,
\vec{AD} = s v_1 + t v_2  (*) para s , t escalares .

Faça um esboço da situação descrita .

A relação acima nos permitir verificar se os pontos dados são coplanares .

Se o sistema (*) possui solução , então A,B,C,D estão em um mesmo plano . Caso contrário não .

Se você estudou também ,dependência, independência linear , de (*) , resulta que os vetores três vetores são L.D .
Outra forma seria verificar se os vetores são L.D. ou L.I. ...

Enfim , como disse mais de um método .

Se quiser ler mais , recomendo este material :

http://www.professores.uff.br/kowada/ga ... 1aula4.pdf
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59