• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Coplanaridade

Coplanaridade

Mensagempor MtHenrique » Seg Mai 05, 2014 22:51

Verifique se os seguintes pontos são coplanares: A(2,2,1), B(3,1,2), C(2,3,0) e D (2,3,2);
MtHenrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 04, 2014 11:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Coplanaridade

Mensagempor e8group » Ter Mai 06, 2014 01:33

Em outras palavras , queremos verificar se estes pontos estão em um mesmo plano .Para tal , há mais de um método . Já aprendeu produto vetorial , interno ? Caso sim , uma forma é tomar o produto misto entre os três vetores construídos (usando todos os pontos dados ) e verificar o resultado. Caso não , veremos outra forma ...

Primeiro como definir a eq. de uma plano na forma paramétrica

Considere os pontos A, B , C(não colineares ) pertencendo a um plano \pi \subset \mathbb{R}^3 .
Podemos construir os vetores v_1 = \vec{AB}  ,  v_2 = \vec{AC} e ambos são paralelos a \pi .

Agora seja D um ponto qualquer deste plano [/tex] . Construímos o vetor \vec{AD} , vemos que \vec{AD} se exprimir como soma de dois vetores , um paralelo a v_1 e o outro a v_2 . Ou seja é ,
\vec{AD} = s v_1 + t v_2  (*) para s , t escalares .

Faça um esboço da situação descrita .

A relação acima nos permitir verificar se os pontos dados são coplanares .

Se o sistema (*) possui solução , então A,B,C,D estão em um mesmo plano . Caso contrário não .

Se você estudou também ,dependência, independência linear , de (*) , resulta que os vetores três vetores são L.D .
Outra forma seria verificar se os vetores são L.D. ou L.I. ...

Enfim , como disse mais de um método .

Se quiser ler mais , recomendo este material :

http://www.professores.uff.br/kowada/ga ... 1aula4.pdf
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.