• Anúncio Global
    Respostas
    Exibições
    Última mensagem

crescimento e decrescimento

crescimento e decrescimento

Mensagempor joandro » Dom Abr 13, 2014 11:30

encontra crescimento e decrescimento e a concavidade da função x^4-4x^3+10
joandro
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 13, 2014 11:22
Formação Escolar: GRADUAÇÃO
Área/Curso: exatas
Andamento: cursando

Re: crescimento e decrescimento

Mensagempor alienante » Ter Abr 29, 2014 17:27

x=3f(x)=x^4-4x^3+10\rightarrow \frac{d}{dx}[f(x)]=4x^3-12x^2\rightarrow \frac{d^2}{dx^2}[f(x)]=12x^2-24x . Achando os pontos críticos com a derivada primeira temos que:\frac{d}{dx}[f(x)]=4x^3-12x^2=0\rightarrow 4x^2(x-3)=0 oque significa que {x}_{1}=0 e {x}_{2}=3 . Se pegarmos qualquer ponto no intervalo (-\infty,0) perceberemos que \frac{d}{dx}[f(x)]<0, portanto nesse intervalo a função é decrescente, no intervalo (0,3) veremos que \frac{d}{dx}[f(x)]<0, logo nesse intervalo também será decrescente, e no intervalo (3,+\infty) percebemos que \frac{d}{dx}[f(x)]>0, logo a função será crescente nesse intervalo.Quanto a concavidade termos de achar os pontos de inflexão com a derivada segunda:\frac{d^2}{dx^2}[f(x)]=12x^2-24x=0\rightarrow 12x(x-2)=0 logo {x}_{1}=0 e {x}_{2}=2. Se analasarmos o intervalo (-\infty,0) veremos que \frac{d^2}{dx^2}[f(x)]>0 logo a função será concava para cima nesse intervalo.No intervalo(0,2) veremos que \frac{d^2}{dx^2}[f(x)]<0 logo a função será concava para baixo nesse intervalo, e no intervalo(2,+\infty) veremos que \frac{d^2}{dx^2}[f(x)]>0 logo veremos que a função será concava para cima nesse intervalo.
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}