• Anúncio Global
    Respostas
    Exibições
    Última mensagem

crescimento e decrescimento

crescimento e decrescimento

Mensagempor joandro » Dom Abr 13, 2014 11:30

encontra crescimento e decrescimento e a concavidade da função x^4-4x^3+10
joandro
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 13, 2014 11:22
Formação Escolar: GRADUAÇÃO
Área/Curso: exatas
Andamento: cursando

Re: crescimento e decrescimento

Mensagempor alienante » Ter Abr 29, 2014 17:27

x=3f(x)=x^4-4x^3+10\rightarrow \frac{d}{dx}[f(x)]=4x^3-12x^2\rightarrow \frac{d^2}{dx^2}[f(x)]=12x^2-24x . Achando os pontos críticos com a derivada primeira temos que:\frac{d}{dx}[f(x)]=4x^3-12x^2=0\rightarrow 4x^2(x-3)=0 oque significa que {x}_{1}=0 e {x}_{2}=3 . Se pegarmos qualquer ponto no intervalo (-\infty,0) perceberemos que \frac{d}{dx}[f(x)]<0, portanto nesse intervalo a função é decrescente, no intervalo (0,3) veremos que \frac{d}{dx}[f(x)]<0, logo nesse intervalo também será decrescente, e no intervalo (3,+\infty) percebemos que \frac{d}{dx}[f(x)]>0, logo a função será crescente nesse intervalo.Quanto a concavidade termos de achar os pontos de inflexão com a derivada segunda:\frac{d^2}{dx^2}[f(x)]=12x^2-24x=0\rightarrow 12x(x-2)=0 logo {x}_{1}=0 e {x}_{2}=2. Se analasarmos o intervalo (-\infty,0) veremos que \frac{d^2}{dx^2}[f(x)]>0 logo a função será concava para cima nesse intervalo.No intervalo(0,2) veremos que \frac{d^2}{dx^2}[f(x)]<0 logo a função será concava para baixo nesse intervalo, e no intervalo(2,+\infty) veremos que \frac{d^2}{dx^2}[f(x)]>0 logo veremos que a função será concava para cima nesse intervalo.
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.