• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor ilane » Seg Abr 28, 2014 11:04

\int_(x+1) sen x dx gente achei a seguinte resposta

[tex] sen(x) dx = - cos (x)+ c[\tex]
usando a forma alternativa da integral
[tex]-\frac{1}{2}{e}^{-1x} - \frac{e^1x}{2} +c[\tex]
gostaria de saber se usando essa formula a resposta está correta e se existe outra formula para chegar ao resultado.
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral

Mensagempor alienante » Ter Abr 29, 2014 16:04

\int_{}^{}usin(u)du=-ucos(u)-\int_{}^{}(-cos(u))du=-ucos(u)+sin(u)+cSe voce chamar u=x+1\rightarrow du=dx logo\int_{}^{}(x+1)sin(x)dx=\int_{}^{}usin(u)du.Por integração por partes \int_{}^{}adb=ab-\int_{}^{}bda,irei chamar a=u e db=sin(u)du.Comoa=u\rightarrow da=du e db=sin(u)du\rightarrow\int_{}^{}db=\int_{}^{}sin(u)du\rightarrow b=-cos(u)+c, Logo(irei ignorar a constante).Voltando para a variavel x temos que :\int_{}^{}(x+1)sin(x)dx=-(x+1)cos(x+1)+sin(x+1)+c
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.