• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor ilane » Seg Abr 28, 2014 11:04

\int_(x+1) sen x dx gente achei a seguinte resposta

[tex] sen(x) dx = - cos (x)+ c[\tex]
usando a forma alternativa da integral
[tex]-\frac{1}{2}{e}^{-1x} - \frac{e^1x}{2} +c[\tex]
gostaria de saber se usando essa formula a resposta está correta e se existe outra formula para chegar ao resultado.
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral

Mensagempor alienante » Ter Abr 29, 2014 16:04

\int_{}^{}usin(u)du=-ucos(u)-\int_{}^{}(-cos(u))du=-ucos(u)+sin(u)+cSe voce chamar u=x+1\rightarrow du=dx logo\int_{}^{}(x+1)sin(x)dx=\int_{}^{}usin(u)du.Por integração por partes \int_{}^{}adb=ab-\int_{}^{}bda,irei chamar a=u e db=sin(u)du.Comoa=u\rightarrow da=du e db=sin(u)du\rightarrow\int_{}^{}db=\int_{}^{}sin(u)du\rightarrow b=-cos(u)+c, Logo(irei ignorar a constante).Voltando para a variavel x temos que :\int_{}^{}(x+1)sin(x)dx=-(x+1)cos(x+1)+sin(x+1)+c
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.