• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Seja f: R -> R responda:

[Limites] Seja f: R -> R responda:

Mensagempor yuricastilho » Qui Abr 10, 2014 00:15

b) Se \[\lim_{x \rightarrow 0} \frac{f(x)}{x} = 0\], qual o \[\lim_{x \rightarrow 0} f(x)\] ?

c)Se \[\lim_{x \rightarrow + \infty } \frac{f(x)}{x^2 + x} = +\infty\] qual o \[\lim_{x \rightarrow + \infty } f(x)\]

Se alguém puder me ajudar nesses dois por favor...
yuricastilho
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 05, 2014 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Limites] Seja f: R -> R responda:

Mensagempor e8group » Sáb Abr 12, 2014 01:04

A ideia geral é \pm essa

Se \lim_{x\to c } \frac{g(x)}{h(x)} = k calcule \lim_{x\to c} g(x) .

Um raciocínio utilizando uma das regras operatórias \lim_{x\to c}  g(x) =  \lim_{x\to c}  \left( \frac{g(x)}{h(x)}\right) \cdot h(x) =   \lim_{x\to c}  \left( \frac{g(x)}{h(x)}\right) \cdot \lim_{x\to c} h(x)  = k \cdot  \lim_{x\to c} h(x) . Em seguida ,calcule separadamente o limite da função h .

P.S.: c e k podem ser números bem como \pm \infty .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] Seja f: R -> R responda:

Mensagempor yuricastilho » Ter Abr 15, 2014 14:31

Obrigado Santhiago, consegui fazer agora.
yuricastilho
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 05, 2014 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.