• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Seja f(x) = (3x - 2)/(x - 2) RESOLVIDO

[Limites] Seja f(x) = (3x - 2)/(x - 2) RESOLVIDO

Mensagempor yuricastilho » Sáb Abr 05, 2014 19:59

Seja f(x)=\frac{(3x - 2)}{(x - 2)} calcule os limites:
\lim_{x \rightarrow + \infty} f(x)  \lim_{x \rightarrow - \infty} f(x)
Não tenho ideia de como começar porque se substituir infnito dará infinito sobre infinito, que é uma indeterminação.
Também não consegui enxergar nenhuma fatoração ou manipulação algrica. Se alguém puder me ajudar, ficarei muito grato.
Editado pela última vez por yuricastilho em Dom Abr 06, 2014 22:46, em um total de 1 vez.
yuricastilho
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 05, 2014 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Limites] Seja f(x) = (3x - 2)/(x - 2) calcule os limite

Mensagempor Russman » Dom Abr 06, 2014 01:15

Exato. Substituindo x=\infty o limite calcula \frac{\infty}{\infty} que é uma indeterminação. Ou seja, esse limite é um número um tanto difícil de obter. Porém, vamos manipular a função. Divida o numerador e o denominador por x.

\lim_{x\rightarrow \infty } f(x) = \lim_{x\rightarrow \infty }\frac{3x-2}{x-2} = \lim_{x\rightarrow \infty }\frac{3-\frac{2}{x}}{1-\frac{2}{x}}

Concorda?

Se sim, basta aplicar o limite. Como \frac{2}{x} \rightarrow 0, então

\lim_{x\rightarrow \infty } f(x)  = \lim_{x\rightarrow \infty }\frac{3-\frac{2}{x}}{1-\frac{2}{x}} = \frac{3}{1} = 3

Da mesma forma,

\lim_{x\rightarrow -\infty } f(x)  = \lim_{x\rightarrow -\infty }\frac{3-\frac{2}{x}}{1-\frac{2}{x}} = \frac{3}{1} = 3

Portanto, a reta y=3 é uma assintota dessa função.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Limites] Seja f(x) = (3x - 2)/(x - 2) calcule os limite

Mensagempor Russman » Dom Abr 06, 2014 01:16

.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Limites] Seja f(x) = (3x - 2)/(x - 2) calcule os limite

Mensagempor yuricastilho » Dom Abr 06, 2014 22:45

Muito Obrigado Russman.
Ajudou muito :)
yuricastilho
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 05, 2014 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.