por Jhenrique » Ter Abr 01, 2014 00:31
Compondo funções trigonométricas, você perceberá que as principais substituições se relacionam com a tabela abaixo:

Então comecei a integrar cada uma das expressões acima e criei uma nova tabela:

No entanto, eu desgostei do resultado da integral circulada em vermelho, porque, na verdade, eu não sei transformar a função arctan(...) numa expressão similar às expressões das duas integrais (de cima e de baixo) adjacentes. Eu tentei alguma coisa, vejam:

Mas este resultado não é suficientemente parecido com a integrais de

e

.
Você tem ideia de como fazer tal integral ser parecida com as demais?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Qua Abr 02, 2014 18:26
Você precisa calcular o loraritmo do argumento complexo usando de análise complexa.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [integrais usando substituições indicadas]
por Giu » Sáb Fev 11, 2012 14:08
- 1 Respostas
- 1563 Exibições
- Última mensagem por LuizAquino

Sáb Fev 11, 2012 14:21
Cálculo: Limites, Derivadas e Integrais
-
- [Substituições trigonométricas]Resolução de apostila básica
por sabaku » Ter Dez 06, 2011 23:49
- 0 Respostas
- 2248 Exibições
- Última mensagem por sabaku

Ter Dez 06, 2011 23:49
Pedidos
-
- [Substituições trigonométricas] Dúvida para resolver exercíc
por anieli » Qui Dez 15, 2011 09:58
- 2 Respostas
- 1788 Exibições
- Última mensagem por anieli

Qui Dez 15, 2011 23:50
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 4611 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4579 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.