• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral de substituições trigonométricas

Integral de substituições trigonométricas

Mensagempor Jhenrique » Ter Abr 01, 2014 00:31

Compondo funções trigonométricas, você perceberá que as principais substituições se relacionam com a tabela abaixo:

Imagem

Então comecei a integrar cada uma das expressões acima e criei uma nova tabela:
Imagem

No entanto, eu desgostei do resultado da integral circulada em vermelho, porque, na verdade, eu não sei transformar a função arctan(...) numa expressão similar às expressões das duas integrais (de cima e de baixo) adjacentes. Eu tentei alguma coisa, vejam:

\int \frac{\sqrt{x^2-1}}{x}dx = \sqrt{x^2-1} + \frac{i}{2} \log(x^2 - 2i \sqrt{1-x^2}-2) -i \log(x)

Mas este resultado não é suficientemente parecido com a integrais de \frac{\sqrt{x^2+1}}{x} e \frac{\sqrt{1 - x^2}}{x}.

Você tem ideia de como fazer tal integral ser parecida com as demais?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Integral de substituições trigonométricas

Mensagempor Russman » Qua Abr 02, 2014 18:26

Você precisa calcular o loraritmo do argumento complexo usando de análise complexa.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.