• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[trigonometria] Exercício

[trigonometria] Exercício

Mensagempor fff » Qua Abr 02, 2014 06:42

Boa tarde. Tenho dúvidas neste exercício nas duas alíneas. Na alínea e a resposta é [1,1+\frac{3\sqrt{3}}{4}].
Em relação à alínea e, fiz assim:
f(x)=1+|2sin(2x+\frac{\Pi }{3})cos^2(x+\frac{\Pi }{6})|
f(\frac{5\Pi }{6})=1
f(\frac{\Pi }{6})=1+|2sin(2*\frac{\Pi }{6}+\frac{\Pi }{3})cos^2(\frac{\Pi}{6}+\frac{\Pi }{6} )|=1+|2sin(\frac{2\Pi }{3})cos^2(\frac{\Pi }{3})|=1+|2*\frac{\sqrt{3}}{2}*\frac{1}{4}|=1+|\frac{\sqrt{3}}{4}|
Imagem
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [trigonometria] Exercício

Mensagempor e8group » Qua Abr 02, 2014 10:19

Bom dia !

Segestão :

a)

Note que sin(2 \zeta) = 2 sin(\zeta) \cdot cos(\zeta) (Basta desenvolver sin(a+b) =sin(a)cos(b) + sin(b)cos(b) para o caso em que a=b) para qualquer \zeta .

Agora 4x = 2(2x) e assim , sin(4x) = sin(2(2x)) = 2 sin(2x)cos(2x) . Logo teremos

sin(2x) + sin(4x)/2 = sin(2x) + sin(2x)cos(2x)  = sin(2x)[1 + cos(2x)]   (*) .


Mas , sabemos que cos(a+b) = cos(a)cos(b) - sin(a)sin(b) .

Usando a fórmula acima tente mostrar que 1+cos(2x) = 2 cos^2 x .


e)

vc desenvolveu corretamente , agora lembre-se que |\sqrt{3}/4| = \sqrt{3}/4 e além disso

f(x) se relaciona por 1 + "número positivo" , quando este número "positivo" for máximo , f(x) também será . Analogamente, quando este "número positivo" for mínimo , f(x) tbm será . Ora, então para qualquer ponto x do domínio de f   ( \forall x \in Dom(f) ) , teremos

f(x) \geq   1 e f(x) \leq  1 + \sqrt{3}/4   \therefore   Im(f) \subset [1 ,1 + \sqrt{3}/4 ] . O contradomínio de f é qualquer conjunto que contém o intervalo acima , podendo ser o próprio intervalo .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [trigonometria] Exercício

Mensagempor fff » Qua Abr 02, 2014 10:33

Obrigada pela explicação!!
Eu tenho a fórmula do cos(2x):
cos(2x)=cos^2a-sin^2a
Então:
sin(2x)[1+cos(2x)]=sin(2x)[1+cos^2x-sin^2x]=sin(2x)[1-sin^2x+cos^2x]=sin(2x)[cos^2x+cos^2x]=sin(2x)[2cos^2x]=2sin(2x)cos^2x
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.