por e8group » Qua Abr 02, 2014 10:19
Bom dia !
Segestão :
a)
Note que

(Basta desenvolver sin(a+b) =sin(a)cos(b) + sin(b)cos(b) para o caso em que a=b) para qualquer

.
Agora

e assim ,

. Logo teremos
![sin(2x) + sin(4x)/2 = sin(2x) + sin(2x)cos(2x) = sin(2x)[1 + cos(2x)] (*) sin(2x) + sin(4x)/2 = sin(2x) + sin(2x)cos(2x) = sin(2x)[1 + cos(2x)] (*)](/latexrender/pictures/64e37509b2c53492d470ac4b2d577c81.png)
.
Mas , sabemos que

.
Usando a fórmula acima tente mostrar que

.
e)
vc desenvolveu corretamente , agora lembre-se que

e além disso
f(x) se relaciona por 1 + "número positivo" , quando este número "positivo" for máximo , f(x) também será . Analogamente, quando este "número positivo" for mínimo , f(x) tbm será . Ora, então para qualquer ponto

do domínio de

, teremos

e
![f(x) \leq 1 + \sqrt{3}/4 \therefore Im(f) \subset [1 ,1 + \sqrt{3}/4 ] f(x) \leq 1 + \sqrt{3}/4 \therefore Im(f) \subset [1 ,1 + \sqrt{3}/4 ]](/latexrender/pictures/d3a6351590d1e88d2f1bc3c2d51d6d8b.png)
. O contradomínio de f é qualquer conjunto que contém o intervalo acima , podendo ser o próprio intervalo .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fff » Qua Abr 02, 2014 10:33
Obrigada pela explicação!!
Eu tenho a fórmula do

:

Então:
![sin(2x)[1+cos(2x)]=sin(2x)[1+cos^2x-sin^2x]=sin(2x)[1-sin^2x+cos^2x]=sin(2x)[cos^2x+cos^2x]=sin(2x)[2cos^2x]=2sin(2x)cos^2x sin(2x)[1+cos(2x)]=sin(2x)[1+cos^2x-sin^2x]=sin(2x)[1-sin^2x+cos^2x]=sin(2x)[cos^2x+cos^2x]=sin(2x)[2cos^2x]=2sin(2x)cos^2x](/latexrender/pictures/deb319e8d001fe8f0b65b42a75b8a721.png)
-

fff
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sáb Dez 21, 2013 11:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Informática
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [P.A.] Exercício
por Cleyson007 » Dom Mai 25, 2008 13:02
- 1 Respostas
- 6387 Exibições
- Última mensagem por admin

Dom Mai 25, 2008 13:20
Progressões
-
- Exercício de PA
por Cleyson007 » Dom Jun 01, 2008 02:45
- 1 Respostas
- 11098 Exibições
- Última mensagem por admin

Dom Jun 01, 2008 14:31
Progressões
-
- Exercício de PA e PG
por Cleyson007 » Sáb Jun 14, 2008 01:21
- 3 Respostas
- 15057 Exibições
- Última mensagem por DanielFerreira

Sex Jul 24, 2009 11:59
Progressões
-
- exercicio de P.G.
por Gir » Qui Jul 02, 2009 18:21
- 3 Respostas
- 4207 Exibições
- Última mensagem por Gir

Sex Jul 03, 2009 10:12
Progressões
-
- exercicio de P.G.
por Gir » Seg Jul 06, 2009 10:54
- 1 Respostas
- 3206 Exibições
- Última mensagem por Marcampucio

Seg Jul 06, 2009 16:33
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.