por Andre Arruda » Ter Mar 25, 2014 16:55
Olá! Estava olhando provas anteriores de minha universidade e vi uma questão sobre matrizes que pedia para falar se algumas afirmativas feitas eram verdadeiras ou falsas com justificativa. Nessa afirmação:
"Se

é uma matriz

x

tal que

, então

ou

"
Bom, como uma matriz multiplicada pela sua inversa sempre dá a matriz identidade, imaginei que a afirmação seja falsa, uma vez que para que

,

.
Não sei, entretanto, como colocar isso na resposta caso apareça em uma prova (ou qualquer questão similar) e se teria que exemplificar com um caso numérico para prova. É meu primeiro semestre na universidade, então não tenho muita noção de como funciona isso. Se alguém puder ajudar com essa ideia, agradeço muito!
-
Andre Arruda
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Mar 25, 2014 16:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
por e8group » Qui Mar 27, 2014 12:32
Bom dia . A implicação não necessariamente é verdadeira . Se fosse , ela valeria para todo

natural .Negar a afirmação entre aspas é o suficiente mostrar um contra exemplo . Vamos escolher n = 2 para simplificar e mostra que existe outra matriz

inversível diferente de

tal que

.Comece escrevendo

(vamos determinar a,b,c,d ) . Segue-se

.
Desde que

, então

e

.
Dá segunda relação ,temos

e

quaisquer .
Mas ,

. Como

é sempre positivo , o lado direito também o é , escolhendo-se então

reais tais que

a solução geral do sistema será

com

.
Agora podemos encontrar quantas matrizes quisermos , basta tomar valores para

de modo que

. Exemplo , escolha

e

.Temos

e

Disso temos uma matriz

tal que

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Andre Arruda » Qui Mar 27, 2014 17:28
Certo, muito obrigado, Santhiago! Me ajudou bastante, acho que peguei a ideia de como justificar, vou treinar mais isso. Mais uma vez, muito obrigado.
-
Andre Arruda
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Mar 25, 2014 16:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Matrizes] Comentar uma afirmação
por fff » Sex Out 10, 2014 07:56
- 0 Respostas
- 2431 Exibições
- Última mensagem por fff

Sex Out 10, 2014 07:56
Matrizes e Determinantes
-
- verificação espaço vetor.
por amr » Qua Abr 06, 2011 12:15
- 0 Respostas
- 1430 Exibições
- Última mensagem por amr

Qua Abr 06, 2011 12:15
Introdução à Álgebra Linear
-
- [Verificação de Espaço Vetorial]
por Engenet » Qua Jan 11, 2017 13:36
- 1 Respostas
- 1984 Exibições
- Última mensagem por Engenet

Qui Jan 12, 2017 21:02
Álgebra Linear
-
- Justificar a afirmação
por silvanuno11 » Sex Mai 25, 2012 12:45
- 2 Respostas
- 4111 Exibições
- Última mensagem por silvanuno11

Seg Mai 28, 2012 06:36
Binômio de Newton
-
- Justificar a afirmação
por silvanuno11 » Dom Mai 27, 2012 16:30
- 1 Respostas
- 1624 Exibições
- Última mensagem por PeterHiggs

Qui Mai 31, 2012 11:22
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.