• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Raiz Cúbica] Diferença de Raízes Cúbicas

[Raiz Cúbica] Diferença de Raízes Cúbicas

Mensagempor CJunior » Sex Fev 28, 2014 21:31

( IME 1991) Mostre que \sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}} é um número racional.
CJunior
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Jan 26, 2014 13:18
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: [Raiz Cúbica] Diferença de Raízes Cúbicas

Mensagempor young_jedi » Sáb Mar 01, 2014 13:40

x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}

x^3=\left(\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}\right)^3

x^3=3+\sqrt[2]{9+\frac{125}{27}}-3\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}^2.\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}+3\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}^2+3-\sqrt[2]{9+\frac{125}{27}}

x^3=6-3\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}^2.\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}+
3\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}^2

x^3=6-3\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right)^2.\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)}+3\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right).\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)^2}

x^3=6-3\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right).\left(-3^2+\sqrt[2]{9+\frac{125}{27}}^2\right)}+3\sqrt[3]{\left(-3^2+\sqrt[2]{9+\frac{125}{27}}^2\right).\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)}


x^3=6-3\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right).\left(-9+9+\frac{125}{27}\right)}+3\sqrt[3]{\left(-9+9+\frac{125}{27}\right).\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)}

x^3=6-3\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right).\frac{125}{27}}+3\sqrt[3]{\frac{125}{27}.\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)}

x^3=6-3.\frac{5}{3}\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right)}+3.\frac{5}{3}\sqrt[3]{\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)}

x^3=6-5\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}+5\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}

x^3=6-5\left(\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}\right)

x^3=6-5x

x^3+5x-6=0

é facil ver que a raiz real dessa equação é 1

portanto

x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}=1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Raiz Cúbica] Diferença de Raízes Cúbicas

Mensagempor Man Utd » Ter Mar 04, 2014 15:27

CJunior escreveu:( IME 1991) Mostre que \sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}} é um número racional.



x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-\left(3-\sqrt[2]{9+\frac{125}{27}}\right)}


x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}+\sqrt[3]{3-\sqrt[2]{9+\frac{125}{27}}}


Perceba que agora está no "jeito" da fórmula de cardano : x=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
que serve para resolver equações cúbicas reduzidas do tipo: x^{3}+px+q=0.Enfim comparando-a com a fórmula obtemos : q=-6 \;\; \wedge \;\; p=5,segue que a equação é :

x^3+5x-6=0


que já sabemos que a raiz real é \boxed{\boxed{1}}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Raiz Cúbica] Diferença de Raízes Cúbicas

Mensagempor young_jedi » Ter Mar 04, 2014 22:01

fórmula de cardano,

muito bem observado Man Utd,
desse jeito fica mais simples valeu ai!!!!
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59