por CJunior » Sex Fev 28, 2014 21:31
( IME 1991) Mostre que
![\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}} \sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}](/latexrender/pictures/4621d3f2e07557a60e12af4abf134f60.png)
é um número racional.
-
CJunior
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Jan 26, 2014 13:18
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por young_jedi » Sáb Mar 01, 2014 13:40
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Man Utd » Ter Mar 04, 2014 15:27
CJunior escreveu:( IME 1991) Mostre que
![\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}} \sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}](/latexrender/pictures/4621d3f2e07557a60e12af4abf134f60.png)
é um número racional.
![x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-\left(3-\sqrt[2]{9+\frac{125}{27}}\right)} x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-\left(3-\sqrt[2]{9+\frac{125}{27}}\right)}](/latexrender/pictures/d09c32a8ff15ff88bcfa0477efae5cc1.png)
![x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}+\sqrt[3]{3-\sqrt[2]{9+\frac{125}{27}}} x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}+\sqrt[3]{3-\sqrt[2]{9+\frac{125}{27}}}](/latexrender/pictures/77177a6ce28bb1b576797645467a7e0d.png)
Perceba que agora está no "jeito" da
fórmula de cardano :
que serve para resolver equações cúbicas reduzidas do tipo:

.Enfim comparando-a com a fórmula obtemos :

,segue que a equação é :

que já sabemos que a raiz real é

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por young_jedi » Ter Mar 04, 2014 22:01
fórmula de cardano,
muito bem observado Man Utd,
desse jeito fica mais simples valeu ai!!!!
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites com Raízes Cúbicas
por nathilopes » Qua Mar 05, 2014 02:23
- 2 Respostas
- 2785 Exibições
- Última mensagem por nathilopes

Qua Mar 05, 2014 16:09
Cálculo: Limites, Derivadas e Integrais
-
- [Raiz Cúbica e Raiz Quadrada] Muito difícil achar a solução.
por Leocondeuba » Sáb Mai 11, 2013 19:27
- 2 Respostas
- 7281 Exibições
- Última mensagem por Leocondeuba

Sáb Mai 11, 2013 20:42
Aritmética
-
- Como encontrar as raízes da Equação Cúbica
por DHST » Seg Nov 14, 2011 15:06
- 4 Respostas
- 2207 Exibições
- Última mensagem por DHST

Qua Nov 16, 2011 17:15
Sistemas de Equações
-
- log na base 1\5 de raiz cubica de 625 = 2x
por Nessa 2012 » Seg Nov 19, 2012 16:18
- 1 Respostas
- 3486 Exibições
- Última mensagem por Cleyson007

Seg Nov 19, 2012 16:31
Logaritmos
-
- Fatoração de raiz cúbica
por Paula Noia » Sáb Jun 15, 2013 21:22
- 2 Respostas
- 12154 Exibições
- Última mensagem por Paula Noia

Dom Jun 16, 2013 11:29
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.