• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções com mais de uma variável - curvas de nível

Funções com mais de uma variável - curvas de nível

Mensagempor Victor Mello » Sex Fev 21, 2014 14:23

Galera, eu estou tentando esboçar curvas de nível da função f(x,y)=4x^2+9y^2 para c=0; c=2; c=4 e c = 6

O meu problema é resolver esse tipo de função atribuindo os valores de c pelo simples motivo:

Uma dica que essa questão me deu é que essa função representa uma elipse, mas eu não enxerguei isso.

Eu tentei verificar se essa função é ou não uma elipse completando quadrados. Então seria mais ou menos assim: (2x + 0)^2 para o x e (3y + 0)^2 para y, centro na origem.

E na hora de comparar essa função, atribuindo para c = 2, por exemplo, eu dividi toda a equação por 2, e olha o que aconteceu: \frac{(2x+0)^2}{2} + \frac{(3y+0)^2}{2} = 1

Os semi-eixos maior e menor são iguais, então não poderia ser uma elipse, e sim uma circunferência, pois os raios são iguais.

Será que tem alguma alternativa que demonstra que essa equação realmente é de uma elipse?

Bom, espero que tenham compreendido a minha dúvida e obrigado para quem pôde me ajudar. :-D



Abraço!
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Funções com mais de uma variável - curvas de nível

Mensagempor young_jedi » Sex Fev 21, 2014 16:16

a maneira que eu utilizo para verificar se é uma elipse é esta

4x^2+9y^2=c

\frac{4x^2}{c}+\frac{9y^2}{c}=1

\frac{x^2}{\frac{c}{4}}+\frac{y^2}{\frac{c}{9}}=1


o eixo menor mede

2.\frac{\sqrt{c}}{2}

e o maior

2.\frac{\sqrt{c}}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Funções com mais de uma variável - curvas de nível

Mensagempor Victor Mello » Sex Fev 21, 2014 20:53

Ahh sim, verdade. Esqueci desse detalhe. E realmente é uma elipse, uma vez que os valores dos semi-eixos são diferentes, já achei. Agora sim!


Obrigado pela atenção. :y:
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: