Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por DanielFerreira » Sáb Set 08, 2012 21:39
A soma das idades atuais de Maria e Ana é 44 anos. Atualmente, a idade de Maria é o dobro da idade que Ana tinha quando Maria tinha a metade da idade que Ana terá quando a idade desta for o triplo da idade que Maria tinha quando Maria tinha o triplo da idade de Ana. Com base nessas informações calcule a idade de Ana.
Resp.: 16 anos 6 meses.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por young_jedi » Seg Set 10, 2012 16:29
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por DanielFerreira » Seg Set 10, 2012 23:33
Young_jedi,
boa noite!
Devo confessar que se tivesse tentado fazer como você fez, não chegaria num resultado satisfatório. Segue a forma como fiz:
Maria tem:
xAna tem:
yMaria tinha:
x - aAna tinha:
y - aMaria terá:
x + bAna terá:
y + bCONDIÇÃO I:
danjr5 escreveu:A soma das idades atuais de Maria e Ana é 44...
CONDIÇÃO II:
danjr5 escreveu:Atualmente a idade de Maria é o dobro da idade que Ana tinha...
CONDIÇÃO III:
danjr5 escreveu:... Maria tinha a metade da idade que Ana terá...
CONDIÇÃO IV:
danjr5 escreveu:... a idade desta (Ana) for o triplo da idade que Maria tinha...
CONDIÇÃO V:
danjr5 escreveu:... Maria tinha o triplo da idade de Ana.

- Devemos isolar
a e
b;
e,
- Substituir, sucessivamente, a última equação/condição na 'antecessora'.
Isolando
a da
CONDIÇÃO V teremos

; Substituindo-a na
CONDIÇÃO IV, resulta

Substituindo

na
CONDIÇÃO III, teremos
E finalmente, substituindo

na
CONDIÇÃO II, teremos

Agora...

Resolvendo-o...
y = 16 anos 6 mesesAté logo.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por young_jedi » Seg Set 10, 2012 23:48
danjr5
A grande sacada do exercicio realmente é separar ele em condições, eu parti da ultima condição e fui voltando ate a primeira, ja voce equacionou cada condição separadamente e depois fez um sistema de equações pra chegar ate a resposta, bacana. Valeu ai ate mais
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por tenebroso » Qua Dez 18, 2013 16:34
quando eu chego até esse nível?
-
tenebroso
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Qua Dez 18, 2013 16:00
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: estudante
- Andamento: cursando
por tenebroso » Qua Dez 18, 2013 16:40
O lucro obtido por um comerciante na venda de determinado produto é dado , em reais, pela função L(x)= -1/10x²+ 15x, sendo x o número de unidades vendidas e o menor que x menor que 150.
Se L(m) é o lucro máximo que comerciante tem condições de obter, pode-se afirmar que log( l(m)/3m) é igual a:
a) 1+2log2
b) 2log2+log5
c) 2-log5 QUEM CONSEGUE RESOLVER? EU NÃO CONSEGUI, ALGUÉM CONSEGUE?
d) 1-2log2
e) 1-2log5
-
tenebroso
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Qua Dez 18, 2013 16:00
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: estudante
- Andamento: cursando
por DanielFerreira » Ter Fev 18, 2014 11:46
Olá tenebroso,
abra um tópicos para suas dúvidas!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema de idade
por Alessandra Cezario » Qua Abr 20, 2011 12:57
- 4 Respostas
- 5582 Exibições
- Última mensagem por LuizAquino

Dom Abr 24, 2011 20:12
Problemas do Cotidiano
-
- problema para calcular idade
por Angela Pimenta » Qui Out 27, 2011 14:44
- 3 Respostas
- 2761 Exibições
- Última mensagem por Angela Pimenta

Seg Out 31, 2011 18:18
Funções
-
- Idade
por Ananda » Qua Fev 27, 2008 16:18
- 3 Respostas
- 3310 Exibições
- Última mensagem por admin

Qua Fev 27, 2008 18:21
Problemas do Cotidiano
-
- Idade!
por geriane » Seg Abr 05, 2010 10:49
- 3 Respostas
- 4855 Exibições
- Última mensagem por geriane

Seg Abr 05, 2010 23:57
Desafios Fáceis
-
- Idade do escritor
por Cleyson007 » Qua Jun 10, 2009 09:47
- 6 Respostas
- 3555 Exibições
- Última mensagem por ginrj

Qua Jun 10, 2009 18:04
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.