Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por DanielFerreira » Sáb Set 08, 2012 21:39
A soma das idades atuais de Maria e Ana é 44 anos. Atualmente, a idade de Maria é o dobro da idade que Ana tinha quando Maria tinha a metade da idade que Ana terá quando a idade desta for o triplo da idade que Maria tinha quando Maria tinha o triplo da idade de Ana. Com base nessas informações calcule a idade de Ana.
Resp.: 16 anos 6 meses.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por young_jedi » Seg Set 10, 2012 16:29
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por DanielFerreira » Seg Set 10, 2012 23:33
Young_jedi,
boa noite!
Devo confessar que se tivesse tentado fazer como você fez, não chegaria num resultado satisfatório. Segue a forma como fiz:
Maria tem:
xAna tem:
yMaria tinha:
x - aAna tinha:
y - aMaria terá:
x + bAna terá:
y + bCONDIÇÃO I:
danjr5 escreveu:A soma das idades atuais de Maria e Ana é 44...
CONDIÇÃO II:
danjr5 escreveu:Atualmente a idade de Maria é o dobro da idade que Ana tinha...
CONDIÇÃO III:
danjr5 escreveu:... Maria tinha a metade da idade que Ana terá...
CONDIÇÃO IV:
danjr5 escreveu:... a idade desta (Ana) for o triplo da idade que Maria tinha...
CONDIÇÃO V:
danjr5 escreveu:... Maria tinha o triplo da idade de Ana.

- Devemos isolar
a e
b;
e,
- Substituir, sucessivamente, a última equação/condição na 'antecessora'.
Isolando
a da
CONDIÇÃO V teremos

; Substituindo-a na
CONDIÇÃO IV, resulta

Substituindo

na
CONDIÇÃO III, teremos
E finalmente, substituindo

na
CONDIÇÃO II, teremos

Agora...

Resolvendo-o...
y = 16 anos 6 mesesAté logo.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por young_jedi » Seg Set 10, 2012 23:48
danjr5
A grande sacada do exercicio realmente é separar ele em condições, eu parti da ultima condição e fui voltando ate a primeira, ja voce equacionou cada condição separadamente e depois fez um sistema de equações pra chegar ate a resposta, bacana. Valeu ai ate mais
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por tenebroso » Qua Dez 18, 2013 16:34
quando eu chego até esse nível?
-
tenebroso
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Qua Dez 18, 2013 16:00
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: estudante
- Andamento: cursando
por tenebroso » Qua Dez 18, 2013 16:40
O lucro obtido por um comerciante na venda de determinado produto é dado , em reais, pela função L(x)= -1/10x²+ 15x, sendo x o número de unidades vendidas e o menor que x menor que 150.
Se L(m) é o lucro máximo que comerciante tem condições de obter, pode-se afirmar que log( l(m)/3m) é igual a:
a) 1+2log2
b) 2log2+log5
c) 2-log5 QUEM CONSEGUE RESOLVER? EU NÃO CONSEGUI, ALGUÉM CONSEGUE?
d) 1-2log2
e) 1-2log5
-
tenebroso
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Qua Dez 18, 2013 16:00
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: estudante
- Andamento: cursando
por DanielFerreira » Ter Fev 18, 2014 11:46
Olá tenebroso,
abra um tópicos para suas dúvidas!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema de idade
por Alessandra Cezario » Qua Abr 20, 2011 12:57
- 4 Respostas
- 5582 Exibições
- Última mensagem por LuizAquino

Dom Abr 24, 2011 20:12
Problemas do Cotidiano
-
- problema para calcular idade
por Angela Pimenta » Qui Out 27, 2011 14:44
- 3 Respostas
- 2761 Exibições
- Última mensagem por Angela Pimenta

Seg Out 31, 2011 18:18
Funções
-
- Idade
por Ananda » Qua Fev 27, 2008 16:18
- 3 Respostas
- 3310 Exibições
- Última mensagem por admin

Qua Fev 27, 2008 18:21
Problemas do Cotidiano
-
- Idade!
por geriane » Seg Abr 05, 2010 10:49
- 3 Respostas
- 4855 Exibições
- Última mensagem por geriane

Seg Abr 05, 2010 23:57
Desafios Fáceis
-
- Idade do escritor
por Cleyson007 » Qua Jun 10, 2009 09:47
- 6 Respostas
- 3555 Exibições
- Última mensagem por ginrj

Qua Jun 10, 2009 18:04
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.